Handheld multiphoton and pinhole-free reflectance confocal microscopy enables noninvasive, real-time cross-sectional imaging in skin.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 10 2024
Historique:
received: 01 08 2024
accepted: 17 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Biopsy-based histology has been the foundation of disease diagnosis and management for over a century. A long-sought goal in dermatology is the development of an imaging modality with sufficient resolution and compositional detail to noninvasively interrogate skin histology in vivo. Here, we describe a system that achieves this goal using cross-sectionally scanned, multimodal microscopy (cross-modal). Cross-modal combines multiphoton and reflectance confocal microscopy into one compact system with coordinated three-axis scanning that preserves optical resolution in cross-section. A custom pinhole-free mechanism employing finite-infinite conjugates further simplifies and stabilizes confocal alignment. Evaluated in participants ages 9-81 and Fitzpatrick skin types (FST) 1-5, cross-modal images revealed histological details analogous to those obtained from traditional biopsied tissue. We observed dermal elastosis in sun-damaged skin, elevated melanin in pigmented skin, basaloid nests in basal cell carcinoma, and elongated rete ridges in seborrheic keratosis, supporting cross-modal's potential to deliver histological insights noninvasively.

Identifiants

pubmed: 39478114
doi: 10.1038/s41598-024-76908-7
pii: 10.1038/s41598-024-76908-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26129

Informations de copyright

© 2024. The Author(s).

Références

Jaklitsch, E. et al. Clinical utility of an AI-powered, handheld elastic scattering spectroscopy device on the diagnosis and management of skin cancer by primary care physicians. J. Prim. Care Community Health. https://doi.org/10.1177/21501319231205979 (2023).
doi: 10.1177/21501319231205979 pubmed: 37933569 pmcid: 10631325
Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature. https://doi.org/10.1038/nature21056 (2017).
doi: 10.1038/nature21056 pubmed: 28658222 pmcid: 8382232
Reiter, O. et al. The diagnostic accuracy of dermoscopy for basal cell carcinoma: A systematic review and meta-analysis. J. Am. Acad. Dermatol. 80, 1380–1388 (2019).
doi: 10.1016/j.jaad.2018.12.026 pubmed: 30582991
di Ferrante Ruffano, L. et al. Optical coherence tomography for diagnosing skin cancer in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD013189 (2018).
doi: 10.1002/14651858.CD013189
Caroline, G. et al. In vivo evaluation of skin of children with LC-OCT: An objective assessment. J. Eur. Acad. Dermatol. Venereol. https://doi.org/10.1111/JDV.19163 (2023).
doi: 10.1111/JDV.19163
Rajadhyaksha, M., Marghoob, A., Rossi, A., Halpern, A. & Nehal, K. Reflectance confocal microscopy of skin in vivo: From bench to bedside. Lasers Surg. Med. 49, 1–23 (2017).
doi: 10.1002/lsm.22600
Ruini, C., Schuh, S., Sattler, E. & Welzel, J. Line-field confocal optical coherence tomography—Practical applications in dermatology and comparison with established imaging methods. Skin Res. Technol. 27, 340–352 (2021).
doi: 10.1111/srt.12949 pubmed: 33085784
Chen, K. J., Han, Y., Wang, Z. Y. & Cui, Y. Submicron resolution techniques: Multiphoton microscopy in skin disease. Exp. Dermatol. 32, 1613–1623 (2023).
doi: 10.1111/exd.14899 pubmed: 37522747
Gambichler, T., Pljakic, A. & Schmitz, L. Recent advances in clinical application of optical coherence tomography of human skin. Clin Cosmet. Investig. Dermatol. 8, 345–354 (2015).
doi: 10.2147/CCID.S69119 pubmed: 26185462 pmcid: 4501682
Levine, A. & Markowitz, O. Introduction to reflectance confocal microscopy and its use in clinical practice. JAAD Case Rep. https://doi.org/10.1016/j.jdcr.2018.09.019 (2018).
doi: 10.1016/j.jdcr.2018.09.019 pubmed: 30456275 pmcid: 6232695
Dinnes, J. et al. Reflectance confocal microscopy for diagnosing cutaneous melanoma in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD013190 (2018).
doi: 10.1002/14651858.CD013190 pubmed: 30521691 pmcid: 6517294
Dinnes, J. et al. Reflectance confocal microscopy for diagnosing keratinocyte skin cancers in adults. Cochrane Database Syst. Rev. https://doi.org/10.1002/14651858.CD013191 (2018).
doi: 10.1002/14651858.CD013191 pubmed: 30521691 pmcid: 6517294
Agozzino, M., Gonzalez, S. & Ardigò, M. Reflectance confocal microscopy for inflammatory skin diseases. Actas Dermo-Sifiliográficas (English Edition) 107, 631–639 (2016).
doi: 10.1016/j.adengl.2016.01.030
Levine, A. & Markowitz, O. In vivo reflectance confocal microscopy. Cutis 99, 399–402 (2017).
pubmed: 28686758
Razi, S. et al. Line-field confocal optical coherence tomography for the diagnosis of skin tumors: A systematic review and meta-analysis. Diagnostics 14, 1522 (2024).
doi: 10.3390/diagnostics14141522 pubmed: 39061659 pmcid: 11276068
Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).
doi: 10.1038/nbt899 pubmed: 14595365
Schenke-Layland, K., Riemann, I., Damour, O., Stock, U. A. & König, K. Two-photon microscopes and in vivo multiphoton tomographs—Powerful diagnostic tools for tissue engineering and drug delivery. Adv. Drug Deliv. Rev. 58, 878–896 (2006).
doi: 10.1016/j.addr.2006.07.004 pubmed: 17011064
Balu, M. et al. In vivo multiphoton microscopy of basal cell carcinoma. JAMA Dermatol. https://doi.org/10.1001/jamadermatol.2015.0453 (2015).
doi: 10.1001/jamadermatol.2015.0453 pubmed: 25909650 pmcid: 4607557
Seidenari, S. et al. Diagnosis of BCC by multiphoton laser tomography. Skin Res. Technol. https://doi.org/10.1111/j.1600-0846.2012.00643.x (2012).
doi: 10.1111/j.1600-0846.2012.00643.x pubmed: 23279266
Yew, E., Rowlands, C. & So, P. T. Application of multiphoton microscopy in dermatological studies: A mini-review. J. Innov. Opt. Health Sci. 7, 1330010 (2014).
doi: 10.1142/S1793545813300103 pubmed: 25075226 pmcid: 4112132
König, K. Clinical multiphoton tomography. J. Biophotonics 1, 13–23 (2008).
doi: 10.1002/jbio.200710022 pubmed: 19343631
König, K. et al. Clinical two-photon microendoscopy. Microsc. Res. Tech. 70, 398–402 (2007).
doi: 10.1002/jemt.20445 pubmed: 17393493
Malik, A. N. et al. The use of handheld ultrasound devices in emergency medicine. Technol. Med. https://doi.org/10.1007/s40138-021-00229-6/Published (2021).
doi: 10.1007/s40138-021-00229-6/Published
Dunn, A. K., Wallace, V. P., Coleno, M., Berns, M. W. & Tromberg, B. J. Influence of optical properties on two-photon fluorescence imaging in turbid samples. Appl. Opt. https://doi.org/10.1364/AO.39.001194 (2000).
doi: 10.1364/AO.39.001194 pubmed: 18338003
Palero, J. A. et al. Spectrally resolved multiphoton imaging of in vivo and excised mouse skin tissues. Biophys. J. 93, 992–1007 (2007).
doi: 10.1529/biophysj.106.099457 pubmed: 17449667 pmcid: 1913153
Chen, G., Lui, H. & Zeng, H. Image segmentation for integrated multiphoton microscopy and reflectance confocal microscopy imaging of human skin in vivo. Quant. Imaging Med. Surg. https://doi.org/10.3978/j.issn.2223-4292.2014.11.02 (2015).
doi: 10.3978/j.issn.2223-4292.2014.11.02 pubmed: 26807369 pmcid: 4700236
Wang, H. et al. Perfectly registered multiphoton and reflectance confocal video rate imaging of in vivo human skin. J. Biophotonics 6, 305–309 (2013).
doi: 10.1002/jbio.201200067 pubmed: 23418008
Sanchez, G. N. et al. In vivo imaging of human sarcomere twitch dynamics in individual motor units. Neuron 88, 1109–1120 (2015).
doi: 10.1016/j.neuron.2015.11.022 pubmed: 26687220 pmcid: 5920519
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(7), 676–682 (2012).
doi: 10.1038/nmeth.2019 pubmed: 22743772
Koehler, M. J., König, K., Elsner, P., Bückle, R. & Kaatz, M. In vivo assessment of human skin aging by multiphoton laser scanning tomography. Opt. Lett. 180, 2879 (2006).
doi: 10.1364/OL.31.002879
Pena, A. M. et al. In vivo multiphoton multiparametric 3D quantification of human skin aging on forearm and face. Sci. Rep. https://doi.org/10.1038/s41598-022-18657-z (2022).
doi: 10.1038/s41598-022-18657-z pubmed: 36494395 pmcid: 9734164
Dubois, A. et al. Line-field confocal optical coherence tomography for high-resolution noninvasive imaging of skin tumors. J. Biomed. Opt. 23, 1 (2018).
doi: 10.1117/1.JBO.23.10.106007 pubmed: 30353716
Atak, M. F. et al. Confocal microscopy for diagnosis and management of cutaneous malignancies: Clinical impacts and innovation. Diagnostics 13, 854 (2023).
doi: 10.3390/diagnostics13050854 pubmed: 36899999 pmcid: 10001140

Auteurs

Kate L Montgomery (KL)

Enspectra Health, Inc., Mountain View, CA, USA.

Roberto A Novoa (RA)

Department of Dermatology, Stanford School of Medicine, Stanford, CA, USA.
Department of Pathology, Stanford School of Medicine, Stanford, CA, USA.

Justin M Ko (JM)

Department of Dermatology, Stanford School of Medicine, Stanford, CA, USA.

Gabriel N Sanchez (GN)

Enspectra Health, Inc., Mountain View, CA, USA. gabriel.sanchez@enspectrahealth.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH