Bacteriophages targeting Enterococcus faecalis enhance the therapeutic efficacy of levodopa in an MPTP-induced Parkinson's disease mouse model with E. faecalis gut colonization.
Animals
Enterococcus faecalis
/ drug effects
Levodopa
Bacteriophages
/ physiology
Gastrointestinal Microbiome
/ drug effects
Mice
Disease Models, Animal
Male
Parkinson Disease
/ therapy
Mice, Inbred C57BL
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
/ adverse effects
Antiparkinson Agents
/ pharmacology
Phage Therapy
/ methods
Enterococcus faecalis
Bacteriophage
Gut microbiome
L-DOPA
Parkinson’s disease
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
30 10 2024
30 10 2024
Historique:
received:
04
06
2024
accepted:
18
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Despite the intensive research on gut microbiome-associated diseases over the past 20 years, pharmacological methods for effectively eliminating pathobionts remain unsatisfactory. This study investigated the therapeutic potential of bacteriophages against Enterococcus faecalis, in which bacterial tyrosine decarboxylase (TDC) converts orally administered levodopa (L-DOPA) to dopamine, in an MPTP mouse model of Parkinson's disease (PD). E. faecalis bacteriophages PBEF62, PBEF66, and PBEF67 (4 × 10
Identifiants
pubmed: 39478137
doi: 10.1038/s41598-024-77038-w
pii: 10.1038/s41598-024-77038-w
doi:
Substances chimiques
Levodopa
46627O600J
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
9P21XSP91P
Antiparkinson Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26146Informations de copyright
© 2024. The Author(s).
Références
Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: Connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).
pubmed: 28407481
pmcid: 5576359
doi: 10.1016/j.chom.2017.03.010
Velasquez-Manoff, M. The peacekeepers amid the trillions of microbes that live in the intestines, scientists have found a few species that seem to play a key role in keeping us healthy. Nature 518, S4-11 (2015).
Andrioaie, I. M. et al. The role of the gut microbiome in psychiatric disorders. Microorganisms 10, 2436 (2022).
pubmed: 36557689
doi: 10.3390/microorganisms10122436
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312
doi: 10.1038/nature05414
Gebrayel, P. et al. Microbiota medicine: Towards clinical revolution. J. Transl. Med. 20, 1–20 (2022).
doi: 10.1186/s12967-022-03296-9
Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).
pubmed: 26972811
doi: 10.1038/nrmicro.2016.17
Rekdal, V. M., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364, eaau6323 (2019).
doi: 10.1126/science.aau6323
Haiser, H. J., Seim, K. L., Balskus, E. P. & Turnbaugh, P. J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5, 233–238 (2014).
pubmed: 24637603
doi: 10.4161/gmic.27915
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
pubmed: 29097493
doi: 10.1126/science.aan4236
Zhong, Z., Ye, M. & Yan, F. A review of studies on gut microbiota and levodopa metabolism. Front. Neurol. 14, 1046910 (2023).
pubmed: 37332996
pmcid: 10272754
doi: 10.3389/fneur.2023.1046910
Francino, M. P. Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Front. Microbiol. 6, 1–11 (2016).
doi: 10.3389/fmicb.2015.01543
Zhang, Y. et al. Association between microbial tyrosine decarboxylase gene and levodopa responsiveness in patients with Parkinson disease. Neurology 99, e2443–e2453 (2022).
pubmed: 36240098
doi: 10.1212/WNL.0000000000201204
van Kessel, S. P. et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun. 10, 310 (2019).
pubmed: 30659181
pmcid: 6338741
doi: 10.1038/s41467-019-08294-y
Tatton, N. A. & Kish, S. J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77, 1037–1048 (1997).
pubmed: 9130785
doi: 10.1016/S0306-4522(96)00545-3
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).
Yeom, M. et al. Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota. J. Appl. Microbiol. 119, 560–570 (2015).
pubmed: 25968453
doi: 10.1111/jam.12844
Arabestani, M. R., Nasaj, M. & Mousavi, S. M. Correlation between infective factors and antibiotic resistance in Enterococci clinical isolates in west of Iran. Chonnam Med. J. 53, 56–63 (2017).
pubmed: 28184339
pmcid: 5299130
doi: 10.4068/cmj.2017.53.1.56
van Kessel, S. P., Auvinen, P., Scheperjans, F. & El Aidy, S. Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease. NPJ Parkinsons Dis. 7, 115 (2021).
pubmed: 34911958
pmcid: 8674283
doi: 10.1038/s41531-021-00260-0
Kutateladze, M. & Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect. 38, 426–430 (2008).
pubmed: 18687542
doi: 10.1016/j.medmal.2008.06.023
Paule, A., Frezza, D. & Edeas, M. Microbiota and phage therapy: Future challenges in medicine. Med. Sci. 6, 86 (2018).
Principi, N., Silvestri, E. & Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 10, 1–9 (2019).
doi: 10.3389/fphar.2019.00513
Speck, P. & Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett. 363, 1–5 (2015).
Ooi, M. L. et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to staphylococcus aureus. JAMA Otolaryngol-Head Neck Surg. 145, 723–729 (2019).
pubmed: 31219531
doi: 10.1001/jamaoto.2019.1191
Petrovic Fabijan, A. et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 5, 465–472 (2020).
pubmed: 32066959
doi: 10.1038/s41564-019-0634-z
Phothichaisri, W. et al. Characterization of bacteriophages infecting clinical isolates of clostridium difficile. Front. Microbiol. 9, 1–13 (2018).
doi: 10.3389/fmicb.2018.01701
Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388-1405.e21 (2018).
pubmed: 30193112
doi: 10.1016/j.cell.2018.08.041
Han, S. et al. Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front. Cell Infect. Microbiol. 11, 1–12 (2021).
doi: 10.3389/fcimb.2021.609722
Li, C. et al. Adhesion and colonization of the probiotic Lactobacillus rhamnosus labeled by Dsred2 in mouse gut. Curr. Microbiol. 76, 896–903 (2019).
pubmed: 31115599
doi: 10.1007/s00284-019-01706-8
Bao, H.-D. et al. Alterations in the diversity and composition of mice gut microbiota by lytic or temperate gut phage treatment. Appl. Microbiol. Biotechnol. 102, 10219–10230 (2018).
pubmed: 30302521
doi: 10.1007/s00253-018-9378-6
Ceylani, T., Jakubowska-Doğru, E., Gurbanov, R., Teker, H. T. & Gozen, A. G. The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age. Heliyon 4, e00644 (2018).
pubmed: 29872772
pmcid: 5986162
doi: 10.1016/j.heliyon.2018.e00644
Jang, H. M., Lee, H. J., Jang, S. E., Han, M. J. & Kim, D. H. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol. 11, 1386–1397 (2018).
pubmed: 29867078
doi: 10.1038/s41385-018-0042-3
Lee, K. E., Kim, J. K. & Kim, D. H. Orally administered antibiotics vancomycin and ampicillin cause cognitive impairment with gut dysbiosis in mice with transient global forebrain ischemia. Front. Microbiol. 11, 1–14 (2020).
doi: 10.3389/fmicb.2020.564271
Dąbrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39, 2000–2025 (2019).
pubmed: 30887551
pmcid: 6767042
doi: 10.1002/med.21572
Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).
pubmed: 31068712
pmcid: 6557439
doi: 10.1038/s41591-019-0437-z
Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954 (2017).
pubmed: 28807909
pmcid: 5610518
doi: 10.1128/AAC.00954-17
Pappert, E. J. et al. Levodopa stability in solution: Time course, environmental effects, and practical recommendations for clinical use. Mov. Disord. 11, 24–26 (1996).
pubmed: 8771063
doi: 10.1002/mds.870110106
Contin, M. & Martinelli, P. Pharmacokinetics of levodopa. J. Neurol. 257(Suppl 2), S253–S261 (2010).
pubmed: 21080186
doi: 10.1007/s00415-010-5728-8
Nordberg, A., Nyberg, P. & Windblad, B. Topographic distribution of choline acetyltransferase activity and muscarinic and nicotinic receptors in Parkinson brains. Neurochem Pathol. 3, 223–236 (1985).
pubmed: 3831845
Mattila, P. M. et al. Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol. 102, 160–166 (2001).
pubmed: 11563631
doi: 10.1007/s004010100372
Bugiani, O. et al. Loss of striatal neurons in Parkinson’s disease: A cytometric study. Eur Neurol. 19, 339–344 (1980).
pubmed: 7398694
doi: 10.1159/000115172
McKinley, J. W. et al. Dopamine deficiency reduces striatal cholinergic interneuron function in models of Parkinson’s disease. Neuron 103, 1056-1072.e6 (2019).
pubmed: 31324539
doi: 10.1016/j.neuron.2019.06.013
Won, L., Ding, Y., Singh, P. & Kang, U. J. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice. J. Neurosci. 34, 3090–3094 (2014).
pubmed: 24553948
doi: 10.1523/JNEUROSCI.2888-13.2014