Bacteriophages targeting Enterococcus faecalis enhance the therapeutic efficacy of levodopa in an MPTP-induced Parkinson's disease mouse model with E. faecalis gut colonization.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 10 2024
Historique:
received: 04 06 2024
accepted: 18 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Despite the intensive research on gut microbiome-associated diseases over the past 20 years, pharmacological methods for effectively eliminating pathobionts remain unsatisfactory. This study investigated the therapeutic potential of bacteriophages against Enterococcus faecalis, in which bacterial tyrosine decarboxylase (TDC) converts orally administered levodopa (L-DOPA) to dopamine, in an MPTP mouse model of Parkinson's disease (PD). E. faecalis bacteriophages PBEF62, PBEF66, and PBEF67 (4 × 10

Identifiants

pubmed: 39478137
doi: 10.1038/s41598-024-77038-w
pii: 10.1038/s41598-024-77038-w
doi:

Substances chimiques

Levodopa 46627O600J
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine 9P21XSP91P
Antiparkinson Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26146

Informations de copyright

© 2024. The Author(s).

Références

Tropini, C., Earle, K. A., Huang, K. C. & Sonnenburg, J. L. The gut microbiome: Connecting spatial organization to function. Cell Host Microbe 21, 433–442 (2017).
pubmed: 28407481 pmcid: 5576359 doi: 10.1016/j.chom.2017.03.010
Velasquez-Manoff, M. The peace­keepers amid the trillions of microbes that live in the intestines, scientists have found a few species that seem to play a key role in keeping us healthy. Nature 518, S4-11 (2015).
Andrioaie, I. M. et al. The role of the gut microbiome in psychiatric disorders. Microorganisms 10, 2436 (2022).
pubmed: 36557689 doi: 10.3390/microorganisms10122436
Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).
pubmed: 17183312 doi: 10.1038/nature05414
Gebrayel, P. et al. Microbiota medicine: Towards clinical revolution. J. Transl. Med. 20, 1–20 (2022).
doi: 10.1186/s12967-022-03296-9
Spanogiannopoulos, P., Bess, E. N., Carmody, R. N. & Turnbaugh, P. J. The microbial pharmacists within us: A metagenomic view of xenobiotic metabolism. Nat. Rev. Microbiol. 14, 273–287 (2016).
pubmed: 26972811 doi: 10.1038/nrmicro.2016.17
Rekdal, V. M., Bess, E. N., Bisanz, J. E., Turnbaugh, P. J. & Balskus, E. P. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism. Science 364, eaau6323 (2019).
doi: 10.1126/science.aau6323
Haiser, H. J., Seim, K. L., Balskus, E. P. & Turnbaugh, P. J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes 5, 233–238 (2014).
pubmed: 24637603 doi: 10.4161/gmic.27915
Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018).
pubmed: 29097493 doi: 10.1126/science.aan4236
Zhong, Z., Ye, M. & Yan, F. A review of studies on gut microbiota and levodopa metabolism. Front. Neurol. 14, 1046910 (2023).
pubmed: 37332996 pmcid: 10272754 doi: 10.3389/fneur.2023.1046910
Francino, M. P. Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Front. Microbiol. 6, 1–11 (2016).
doi: 10.3389/fmicb.2015.01543
Zhang, Y. et al. Association between microbial tyrosine decarboxylase gene and levodopa responsiveness in patients with Parkinson disease. Neurology 99, e2443–e2453 (2022).
pubmed: 36240098 doi: 10.1212/WNL.0000000000201204
van Kessel, S. P. et al. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat. Commun. 10, 310 (2019).
pubmed: 30659181 pmcid: 6338741 doi: 10.1038/s41467-019-08294-y
Tatton, N. A. & Kish, S. J. In situ detection of apoptotic nuclei in the substantia nigra compacta of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice using terminal deoxynucleotidyl transferase labelling and acridine orange staining. Neuroscience 77, 1037–1048 (1997).
pubmed: 9130785 doi: 10.1016/S0306-4522(96)00545-3
Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989).
Yeom, M. et al. Oral administration of Lactobacillus casei variety rhamnosus partially alleviates TMA-induced atopic dermatitis in mice through improving intestinal microbiota. J. Appl. Microbiol. 119, 560–570 (2015).
pubmed: 25968453 doi: 10.1111/jam.12844
Arabestani, M. R., Nasaj, M. & Mousavi, S. M. Correlation between infective factors and antibiotic resistance in Enterococci clinical isolates in west of Iran. Chonnam Med. J. 53, 56–63 (2017).
pubmed: 28184339 pmcid: 5299130 doi: 10.4068/cmj.2017.53.1.56
van Kessel, S. P., Auvinen, P., Scheperjans, F. & El Aidy, S. Gut bacterial tyrosine decarboxylase associates with clinical variables in a longitudinal cohort study of Parkinsons disease. NPJ Parkinsons Dis. 7, 115 (2021).
pubmed: 34911958 pmcid: 8674283 doi: 10.1038/s41531-021-00260-0
Kutateladze, M. & Adamia, R. Phage therapy experience at the Eliava Institute. Med. Mal. Infect. 38, 426–430 (2008).
pubmed: 18687542 doi: 10.1016/j.medmal.2008.06.023
Paule, A., Frezza, D. & Edeas, M. Microbiota and phage therapy: Future challenges in medicine. Med. Sci. 6, 86 (2018).
Principi, N., Silvestri, E. & Esposito, S. Advantages and limitations of bacteriophages for the treatment of bacterial infections. Front. Pharmacol. 10, 1–9 (2019).
doi: 10.3389/fphar.2019.00513
Speck, P. & Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett. 363, 1–5 (2015).
Ooi, M. L. et al. Safety and tolerability of bacteriophage therapy for chronic rhinosinusitis due to staphylococcus aureus. JAMA Otolaryngol-Head Neck Surg. 145, 723–729 (2019).
pubmed: 31219531 doi: 10.1001/jamaoto.2019.1191
Petrovic Fabijan, A. et al. Safety of bacteriophage therapy in severe Staphylococcus aureus infection. Nat. Microbiol. 5, 465–472 (2020).
pubmed: 32066959 doi: 10.1038/s41564-019-0634-z
Phothichaisri, W. et al. Characterization of bacteriophages infecting clinical isolates of clostridium difficile. Front. Microbiol. 9, 1–13 (2018).
doi: 10.3389/fmicb.2018.01701
Zmora, N. et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 174, 1388-1405.e21 (2018).
pubmed: 30193112 doi: 10.1016/j.cell.2018.08.041
Han, S. et al. Probiotic gastrointestinal transit and colonization after oral administration: A long journey. Front. Cell Infect. Microbiol. 11, 1–12 (2021).
doi: 10.3389/fcimb.2021.609722
Li, C. et al. Adhesion and colonization of the probiotic Lactobacillus rhamnosus labeled by Dsred2 in mouse gut. Curr. Microbiol. 76, 896–903 (2019).
pubmed: 31115599 doi: 10.1007/s00284-019-01706-8
Bao, H.-D. et al. Alterations in the diversity and composition of mice gut microbiota by lytic or temperate gut phage treatment. Appl. Microbiol. Biotechnol. 102, 10219–10230 (2018).
pubmed: 30302521 doi: 10.1007/s00253-018-9378-6
Ceylani, T., Jakubowska-Doğru, E., Gurbanov, R., Teker, H. T. & Gozen, A. G. The effects of repeated antibiotic administration to juvenile BALB/c mice on the microbiota status and animal behavior at the adult age. Heliyon 4, e00644 (2018).
pubmed: 29872772 pmcid: 5986162 doi: 10.1016/j.heliyon.2018.e00644
Jang, H. M., Lee, H. J., Jang, S. E., Han, M. J. & Kim, D. H. Evidence for interplay among antibacterial-induced gut microbiota disturbance, neuro-inflammation, and anxiety in mice. Mucosal Immunol. 11, 1386–1397 (2018).
pubmed: 29867078 doi: 10.1038/s41385-018-0042-3
Lee, K. E., Kim, J. K. & Kim, D. H. Orally administered antibiotics vancomycin and ampicillin cause cognitive impairment with gut dysbiosis in mice with transient global forebrain ischemia. Front. Microbiol. 11, 1–14 (2020).
doi: 10.3389/fmicb.2020.564271
Dąbrowska, K. Phage therapy: What factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39, 2000–2025 (2019).
pubmed: 30887551 pmcid: 6767042 doi: 10.1002/med.21572
Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).
pubmed: 31068712 pmcid: 6557439 doi: 10.1038/s41591-019-0437-z
Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. 61, e00954 (2017).
pubmed: 28807909 pmcid: 5610518 doi: 10.1128/AAC.00954-17
Pappert, E. J. et al. Levodopa stability in solution: Time course, environmental effects, and practical recommendations for clinical use. Mov. Disord. 11, 24–26 (1996).
pubmed: 8771063 doi: 10.1002/mds.870110106
Contin, M. & Martinelli, P. Pharmacokinetics of levodopa. J. Neurol. 257(Suppl 2), S253–S261 (2010).
pubmed: 21080186 doi: 10.1007/s00415-010-5728-8
Nordberg, A., Nyberg, P. & Windblad, B. Topographic distribution of choline acetyltransferase activity and muscarinic and nicotinic receptors in Parkinson brains. Neurochem Pathol. 3, 223–236 (1985).
pubmed: 3831845
Mattila, P. M. et al. Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol. 102, 160–166 (2001).
pubmed: 11563631 doi: 10.1007/s004010100372
Bugiani, O. et al. Loss of striatal neurons in Parkinson’s disease: A cytometric study. Eur Neurol. 19, 339–344 (1980).
pubmed: 7398694 doi: 10.1159/000115172
McKinley, J. W. et al. Dopamine deficiency reduces striatal cholinergic interneuron function in models of Parkinson’s disease. Neuron 103, 1056-1072.e6 (2019).
pubmed: 31324539 doi: 10.1016/j.neuron.2019.06.013
Won, L., Ding, Y., Singh, P. & Kang, U. J. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice. J. Neurosci. 34, 3090–3094 (2014).
pubmed: 24553948 doi: 10.1523/JNEUROSCI.2888-13.2014

Auteurs

Joon-Pyo Hong (JP)

Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
ACCURIEBIO Co., 190 Soha-ro, Gwangmyeong-si, Gyeonggi-do, 14322, Republic of Korea.

Sooan Shin (S)

ACCURIEBIO Co., 190 Soha-ro, Gwangmyeong-si, Gyeonggi-do, 14322, Republic of Korea.

So Hyeon Chung (SH)

College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.

Myung-Chul Song (MC)

ACCURIEBIO Co., 190 Soha-ro, Gwangmyeong-si, Gyeonggi-do, 14322, Republic of Korea.
Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea.

Jin-Gon Shim (JG)

Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea.

Yoongeun Kim (Y)

Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.

Bombi Lee (B)

Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.

Mijung Yeom (M)

Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.

Hi-Joon Park (HJ)

Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.

Kwang-Hwan Jung (KH)

Department of Life Science, Sogang University, Seoul, 04107, Republic of Korea.

Jongki Hong (J)

College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.

Dae-Hyun Hahm (DH)

Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea. dhhahm@khu.ac.kr.
Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea. dhhahm@khu.ac.kr.
Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea. dhhahm@khu.ac.kr.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH