An antimicrobial resistance gene situationer in the backyard swine industry of a Philippine City.
Antimicrobial resistance
Antimicrobial resistance gene surveillance
GIS
One health
Quantitative PCR
Smallholder farms
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 10 2024
31 10 2024
Historique:
received:
27
06
2024
accepted:
21
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Antimicrobial resistance (AMR) as a result of antimicrobial overuse and misuse in agriculture is a growing concern, especially in the predominant but poorly regulated backyard or smallholder swine farms of the Philippines. A city-scale surveillance of antimicrobial resistance genes (ARGs) was conducted through selected backyard swine farms to obtain a comprehensive understanding of the AMR situation in the backyard sector of Davao City, Philippines. The ARGs encoding resistance to four antimicrobial classes (β-lactams: bla
Identifiants
pubmed: 39478145
doi: 10.1038/s41598-024-77124-z
pii: 10.1038/s41598-024-77124-z
doi:
Substances chimiques
Anti-Bacterial Agents
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26193Subventions
Organisme : USAID Partners for Enhanced Engagement in Research
ID : 2000009924
Organisme : University of the Philippines Balik-PhD Program
ID : OVPAA-BPhD-2016-04
Informations de copyright
© 2024. The Author(s).
Références
World Health Organization. New report calls for urgent action to avert antimicrobial resistance crisis. World Health Organ. https://www.who.int/news-room/detail/29-04-2019-new-report-calls-for-urgent-action-to-avert-antimicrobial-resistance-crisis (2019).
Holmes, A. H. et al. L.J.V. understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 387, 176–187 (2016).
pubmed: 26603922
doi: 10.1016/S0140-6736(15)00473-0
Marti, E., Variatza, E. & Balcazar, J. L. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22, 36–41 (2014).
pubmed: 24289955
doi: 10.1016/j.tim.2013.11.001
Huijbers, P. M. et al. Role of the environment in the transmission of antimicrobial resistance to humans: a review. Environ. Sci. Technol. 49, 11993–12004 (2015).
pubmed: 26355462
doi: 10.1021/acs.est.5b02566
Tripathi, V. & Tripathi, P. Antibiotic resistance genes: an emerging environmental pollutant. In Perspectives in Environmental Toxicology. Environmental Science and Engineering, (ed Kesari, K.) 183–201 (Springer, Cham., (2017).
Van Boeckel, T. P. et al. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. U S A. 112, 5649–5654 (2015).
pubmed: 25792457
pmcid: 4426470
doi: 10.1073/pnas.1503141112
Woolhouse, M., Ward, M., Van Bunnik, B. & Farrar, J. Antimicrobial resistance in humans, livestock and the wider environment. Philos. Trans. R Soc. Lond. B Biol. Sci. 370, 20140083 (2015).
pubmed: 25918441
pmcid: 4424433
doi: 10.1098/rstb.2014.0083
Nhung, N. T., Cuong, N. V., Thwaites, G. & Carrique-Mas, J. Antimicrobial usage and antimicrobial resistance in animal production in Southeast Asia: a review. Antibiot. (Basel). 5, 37 (2016).
doi: 10.3390/antibiotics5040037
Hassell, J. M. et al. Clinically relevant antimicrobial resistance at the wildlife–livestock–human interface in Nairobi: an epidemiological study. Lancet Planet. Health. 3, e259–e269 (2019).
pubmed: 31229001
pmcid: 6630895
doi: 10.1016/S2542-5196(19)30083-X
Department of Health. Antimicrobial Resistance Surveillance Program (ARSP). https://arsp.com.ph/announcement/where-it-started/ (2024).
Inter-Agency Committee on Antimicrobial Resistance. The Philippine National Action Plan on Antimicrobial Resistance. 2019–2023. World Health Organization. https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-spc-npm/nap-library/philippine-national-action-plan-on-amr-2019-2023-final.pdf?sfvrsn=8bbe1fdb_1 (2019).
Stanton, E. & Sia The Philippines pig farming sector: a briefing for Canadian livestock genetics suppliers. Singapore: Embassy of Canada in the Philippines. http://www5.agr.gc.ca/resources/prod/Internet-Internet/MISB-DGSIM/ATS-SEA/PDF/5679-eng.pdf (2010).
Arado, J. Hogs top Davao region’s livestock production. Sunstar Philippines. Sunstar Philippines. https://www.sunstar.com.ph/article/427409/Sports/Hogs-top-Davao-regionslivestock-production (2020).
Philippine Statistics Authority. Swine situation report October-December 2021. Philippine Statistics Office. https://psa.gov.ph/livestock-poultry-iprs/swine/inventory (2022).
Barroga, T. R. M. et al. Antimicrobials used in backyard and commercial poultry and swine farms in the Philippines: a qualitative pilot study. Front. Vet. Sci. 7, 329 (2020).
pubmed: 32733922
pmcid: 7360799
doi: 10.3389/fvets.2020.00329
Austria, E. S. et al. Prevalence and Antimicrobial Resistance of Campylobacter spp. in the raw milk of Backyard-raised carabaos (Bubalus bubalis) in the Philippines. Int. J. Dairy. Sci. 19, 18–26 (2024).
doi: 10.3923/ijds.2024.18.26
Casamina, N. V. M. & Victoriano-Belvis, A. F. B. Detection of Colistin resistant Enterobacteriaceae among Backyard Farm Swine and Swine raisers in Tanay, Rizal Swine Farm. Phil J. Sci. 153, 911–914 (2024).
Maestre-Carballa, L., Navarro-López, V. & Martinez-Garcia, M. City-scale monitoring of antibiotic resistance genes by digital PCR and metagenomics. Environ. Microbiome. 19, 16 (2024).
pubmed: 38491508
pmcid: 10943798
doi: 10.1186/s40793-024-00557-6
Imperial, I. C., Pabustan, P. M., Valencia, K. A., Nicdao, M. A. & Ibana, J. Emergence of resistance genes in fecal samples of antibiotic-treated Philippine broilers emphasizes the need to review local farming practices. Trop. Biomed. 39, 150–159 (2022).
pubmed: 35507938
Kennedy, P. A. Guide to Econometrics. 199 (Wiley, 2008).
Yi, X., Wang, M. & Zhou, Z. The potential impact of naturally produced antibiotics, environmental factors, and anthropogenic pressure on the occurrence of erm genes in urban soils. Environ. Pollut. 245, 282–289 (2019).
pubmed: 30445415
doi: 10.1016/j.envpol.2018.11.009
Cheng, W., Chen, H., Su, C. & Yan, S. Abundance and persistence of antibiotic resistance genes in livestock farms: a comprehensive investigation in eastern China. Environ. Int. 61, 1–7 (2013).
pubmed: 24091253
doi: 10.1016/j.envint.2013.08.023
Aminov, R. I., Garrigues-Jeanjean, N. & Mackie, R. Molecular ecology of tetracycline resistance: development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67, 22–32 (2001).
pubmed: 11133424
pmcid: 92507
doi: 10.1128/AEM.67.1.22-32.2001
Vital, P. G., Caballes, M. B. D. & Rivera, W. L. Antimicrobial resistance in Escherichia coli and Salmonella spp. isolates from fresh produce and the impact to food safety. J. Environ. Sci. Health B. 52, 683–689 (2017).
pubmed: 28679083
doi: 10.1080/03601234.2017.1331676
Salvador-Membreve, D. M. & Rivera, W. L. Predominance of bla TEM and tetA genes in antibiotic-resistant Escherichia coli isolates from Laguna Lake, Philippines. J. Water Sanitation Hygiene Dev. 11, 814–823 (2021).
doi: 10.2166/washdev.2021.067
Chen, B., Hao, L., Guo, X., Wang, N. & Ye, B. Prevalence of antibiotic resistance genes of wastewater and surface water in livestock farms of Jiangsu Province, China. Environ. Sci. Pollut Res. Int. 22, 13950–13959 (2015).
pubmed: 25948386
doi: 10.1007/s11356-015-4636-y
Nikaido, H. Multidrug resistance in bacteria. Annu. Rev. Biochem. 78, 119–146 (2009).
pubmed: 19231985
pmcid: 2839888
doi: 10.1146/annurev.biochem.78.082907.145923
Montanari, M. P., Cochetti, I., Mingoia, M. & Varaldo, P. E. Phenotypic and molecular characterization of tetracycline-and erythromycin-resistant strains of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 47, 2236–2241 (2003).
pubmed: 12821474
pmcid: 161878
doi: 10.1128/AAC.47.7.2236-2241.2003
Alekshun, M. N. & Levy, S. B. Molecular mechanisms of antibacterial multidrug resistance. Cell. 128, 1037–1050 (2007).
pubmed: 17382878
doi: 10.1016/j.cell.2007.03.004
Whitehead, T. R. & &Cotta, M. A. Stored swine manure and swine faeces as reservoirs of antibiotic resistance genes. Lett. Appl. Microbiol. 56, 264–267 (2013).
pubmed: 23297734
doi: 10.1111/lam.12043
Calayag, A. M. B., Widmer, K. W. & Rivera, W. L. Antimicrobial susceptibility and frequency of bla and qnr genes in Salmonella enterica isolated from slaughtered pigs. Antibiotics (Basel). 10, 1442 (2021).
pubmed: 34943653
doi: 10.3390/antibiotics10121442
Shinu, P. et al. Monitoring of non-β-lactam antibiotic resistance-associated genes in esbl producing enterobacterales isolates. Antibiotics (Basel). 9, 884 (2020).
pubmed: 33317078
doi: 10.3390/antibiotics9120884
Shortall, O., Sutherland, L. A., Ruston, A. & Kaler, J. True cowmen and commercial farmers: exploring vets’ and dairy farmers’ contrasting views of ‘good farming’ in relation to biosecurity. Sociologia Ruralis. 58, 583–603 (2018).
doi: 10.1111/soru.12205
Doidge, C. et al. Farmers’ perceptions of preventing antibiotic resistance on sheep and beef farms: risk, responsibility, and action. Front. Vet. Sci. 7, 524 (2020).
pubmed: 32923473
pmcid: 7457032
doi: 10.3389/fvets.2020.00524
Khan, X., Rymer, C., Ray, P. & Lim, R. Categorisation of antimicrobial use in Fijian livestock production systems. Antibiotics (Basel). 11, 294 (2022).
pubmed: 35326758
doi: 10.3390/antibiotics11030294
Matheson, S. M., Edwards, S. A. & Kyriazakis, I. Farm characteristics affecting antibiotic consumption in pig farms in England. Porcine Health Mana. 8, 7 (2022).
doi: 10.1186/s40813-022-00248-z
Lopatto, E. et al. Characterizing the soil microbiome and quantifying antibiotic resistance gene dynamics in agricultural soil following swine CAFO manure application. PLoS ONE. 14, e0220770 (2019).
pubmed: 31425534
pmcid: 6699696
doi: 10.1371/journal.pone.0220770
Pérez-Valera, E. et al. Native soil microorganisms hinder the soil enrichment with antibiotic resistance genes following manure applications. Sci. Rep. 9, 6760 (2019).
pubmed: 31043618
pmcid: 6494816
doi: 10.1038/s41598-019-42734-5
Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science. 337, 1107–1111 (2012).
pubmed: 22936781
pmcid: 4070369
doi: 10.1126/science.1220761
Calub, A. D., Saludes, R. B. & Tabing, E. V. P. An Overview of Agricultural Pollution in the Philippines: The Livestock Sector (Prepared for the World Bank, 2016). https://documents1.worldbank.org/curated/en/640711516770288512/pdf/122930-WP-P153343-PUBLIC-Philippines-Livestock.pdf
Training Center for Applied Geodesy and Photogrammetry. Davao River: DREAM Ground Surveys Report. https://dream.upd.edu.ph/assets/Publications/UP-DREAM-River-Reports/DREAM-Ground-Surveys-for-Davao-River.pdf (2015).
Baquero, F., Martínez, J. L. & Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260–265 (2008).
pubmed: 18534838
doi: 10.1016/j.copbio.2008.05.006
Singer, R. S. & Hofacre, C. L. Potential impacts of antibiotic use in poultry production. Avian Dis. 50, 161–172 (2006).
pubmed: 16863062
doi: 10.1637/7569-033106R.1
Davidson, P. C., Kuhlenschmidt, T. B., Bhattarai, R., Kalita, P. K. & Kuhlenschmidt, M. S. Overland transport of rotavirus and the effect of soil type and vegetation. Water. 8, 78 (2016).
doi: 10.3390/w8030078
Catelo, A. O., Dorado, M. A. & Agbisit, E. Backyard and commercial piggeries in the Philippines: Environmental consequences and pollution control options. Environmental Consequences and Pollution Control Options. Economy and Environment Program for Southeast Asia (EEPSEA), EEPSEA Research Report https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d1664c2016b42e85411589c9d1e291207ea36ff3 (2016).
Donabedian, S. et al. Antimicrobial resistance in swine and chickens fed virginiamycin for growth promotion. J. Microbiol. Methods. 55, 739–743 (2003).
pubmed: 14607416
doi: 10.1016/j.mimet.2003.07.002
Department of Health. The Philippine Action Plan to Combat Antimicrobial Resistance: One Health Approach 2019–2023. (2019).
Murao, L. A. E. et al. Exploratory investigation on the occurrence, spatial distribution, and risk factors of selected zoonotic enteropathogens in Davao City backyard farms. Banwa B. 13 (art024), 1–17 (2018).
Schmittgen, T. D. & Livak, K. J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 3, 1101–1108 (2008).
pubmed: 18546601
doi: 10.1038/nprot.2008.73
Love, J. et al. Graphical statistical software for common statistical designs. J. Stat. Softw. 88, 1–17 (2019).
doi: 10.18637/jss.v088.i02
QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2020).
Collignon, P., Beggs, J. J., Walsh, T. R., Gandra, S. & Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: a univariate and multivariable analysis. Lancet Planet. Health. 2, e398–e405 (2018).
pubmed: 30177008
doi: 10.1016/S2542-5196(18)30186-4
Van Camp, P. J., Haslam, D. B. & Porollo, A. Bioinformatics approaches to the understanding of molecular mechanisms in antimicrobial resistance. Int. J. Mol. Sci. 21, 1363 (2020).
pubmed: 32085478
pmcid: 7072858
doi: 10.3390/ijms21041363
Ismail, E. A. R. Behavior of lasso quantile regression with small sample sizes. J. Multidiscip Eng. Sci. Technol. 2, 388–394 (2015).