Biomolecular analysis of the Epigravettian human remains from Riparo Tagliente in northern Italy.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
22
03
2024
accepted:
27
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
The Epigravettian human remains from Riparo Tagliente in northern Italy represent some of the earliest evidence of human occupation in the southern Alpine slopes after the Last Glacial Maximum. Genomic analyses of the 17,000-year-old Tagliente 2 mandible revealed the oldest presence of a genetic profile with affinities to the Near East in the Italian peninsula, which later became the most widespread hunter-gatherer ancestry across Europe. However, a comparable biomolecular characterization of the Tagliente 1 burial remains unavailable, preventing us from defining its biological relationships with Tagliente 2. Here, we apply paleogenomic, isotopic, and radiocarbon dating analyses on a femur fragment of Tagliente 1 and compare the reconstructed data with previously reported results from Tagliente 2. Despite their different isotopic signatures and non-overlapping radiocarbon dates, we reveal that the two human remains belong to the same male individual. We determine that the distinct isotopic values can be explained by different dietary practices during lifetime, whereas the non-overlapping radiocarbon dates can be caused by minimal radiocarbon contamination, possibly deriving from chemical treatments for conservation purposes. These findings highlight the importance of interdisciplinary biomolecular studies in offering new perspectives on the Palaeolithic fossil record and addressing long-standing bioarchaeological questions.
Identifiants
pubmed: 39478147
doi: 10.1038/s42003-024-06979-9
pii: 10.1038/s42003-024-06979-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1415Informations de copyright
© 2024. The Author(s).
Références
Talamo, S., Fewlass, H., Maria, R. & Jaouen, K. Here we go again”: the inspection of collagen extraction protocols for 14C dating and palaeodietary analysis. STAR. Sci. Technol. Archaeol. Res. 7, 62–77 (2021).
pubmed: 34381618
pmcid: 8300532
Olalde, I. & Posth, C. Latest trends in archaeogenetic research of west Eurasians. Curr. Opin. Genet. Dev. 62, 36–43 (2020).
pubmed: 32610222
doi: 10.1016/j.gde.2020.05.021
Kistler, L., Ware, R., Smith, O., Collins, M. & Allaby, R. G. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 45, 6310–6320 (2017).
pubmed: 28486705
pmcid: 5499742
doi: 10.1093/nar/gkx361
Slon, V. et al. Neandertal and denisovan DNA from pleistocene sediments. Science 356, 605–608 (2017).
pubmed: 28450384
doi: 10.1126/science.aam9695
Bortolini, E. et al. Early Alpine occupation backdates westward human migration in Late Glacial Europe. Curr. Biol. 31, 2484–2493.e7 (2021).
pubmed: 33887180
doi: 10.1016/j.cub.2021.03.078
Gazzoni, V. et al. Late Upper Palaeolithic human diet: first stable isotope evidence from Riparo Tagliente (Verona, Italy). Bull. Mem Soc. Anthropol. Paris 25, 103–117 (2013).
doi: 10.1007/s13219-012-0079-x
Bartolomei, G. et al. Una sepoltura epigravettiana nel deposito pleistocenico del Riparo Tagliente in Valpantena (Verona). Riv. Sci. Preistoriche 29, 101–152 (1974).
Bartolomei, G. et al. I depositi würmiani del Riparo Tagliente. Ann. DellUniv. Ferrara 15, 61–105 (1982).
Berto, C., Luzi, E., Canini, G. M., Guerreschi, A. & Fontana, F. Climate and landscape in Italy during Late Epigravettian. The Late Glacial small mammal sequence of Riparo Tagliente (Stallavena di Grezzana, Verona, Italy). Quat. Sci. Rev. 184, 132–142 (2018).
doi: 10.1016/j.quascirev.2017.07.022
Cavallo, G. et al. Sourcing and processing of ochre during the late upper Palaeolithic at Tagliente rock-shelter (NE Italy) based on conventional X-ray powder diffraction analysis. Archaeol. Anthropol. Sci. 9, 763–775 (2017).
doi: 10.1007/s12520-015-0299-3
Fontana, F., Cilli, C. & Cremona, M. G. Recent data on the Late Epigravettian occupation at Riparo Tagliente, Monti Lessini (Grezzana, Verona): a multidisciplinary perspective. Preistoria Alp. 44, 49–57 (2009).
Fontana, F. et al. Advanced Studies On Early Human Adaptation In The Apennine Peninsula. p. 287–310 (Sidestone Press, 2018).
Oxilia, G. et al. Exploring late Paleolithic and Mesolithic diet in the Eastern Alpine region of Italy through multiple proxies. Am. J. Phys. Anthropol. 174, 232–253 (2021).
pubmed: 32914870
doi: 10.1002/ajpa.24128
Arnaud, J. et al. A reexamination of the Middle Paleolithic human remains from Riparo Tagliente. Italy Quat. Int. 425, 437–444 (2016).
doi: 10.1016/j.quaint.2016.09.009
Corrain, C. Atti Del Reale Istituto Veneto Di Scienze, Lettere Ed Arti. p. 23–26 (Nabu Press, 1966).
Posth, C. et al. Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers. Nature 615, 117–126 (2023).
pubmed: 36859578
pmcid: 9977688
doi: 10.1038/s41586-023-05726-0
Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).
pubmed: 27135931
pmcid: 4943878
doi: 10.1038/nature17993
Hedges, R. E. M., Clement, J. G., Thomas, C. D. L. & O’Connell, T. C. Collagen turnover in the adult femoral mid‐shaft: modeled from anthropogenic radiocarbon tracer measurements. Am. J. Phys. Anthropol. 133, 808–816 (2007).
pubmed: 17405135
doi: 10.1002/ajpa.20598
Bocherens, H. & Drucker, D. Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: case studies from recent and ancient terrestrial ecosystems. Int. J. Osteoarchaeol. 13, 46–53 (2003).
doi: 10.1002/oa.662
Stuart, A. & Lister, A. Extinction chronology of the cave lion Panthera spelaea. Quat. Sci. Rev. 30, 2329–2340 (2011).
doi: 10.1016/j.quascirev.2010.04.023
Posth, C. et al. Pleistocene mitochondrial genomes suggest a single major dispersal of Non-Africans and a late glacial population turnover in Europe. Curr. Biol. 26, 827–833 (2016).
pubmed: 26853362
doi: 10.1016/j.cub.2016.01.037
Diroma, M. A. et al. New insights into mitochondrial DNA reconstruction and variant detection in ancient samples. Front. Genet. 12, 619950 (2021).
pubmed: 33679884
pmcid: 7930628
doi: 10.3389/fgene.2021.619950
Modi, A. et al. More data on ancient human mitogenome variability in Italy: new mitochondrial genome sequences from three Upper Palaeolithic burials. Ann. Hum. Biol. 48, 213–222 (2021).
pubmed: 34459344
doi: 10.1080/03014460.2021.1942549
Yu, H. et al. Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience 25, 104244 (2022).
pubmed: 35494246
pmcid: 9051636
doi: 10.1016/j.isci.2022.104244
Kennett, D. J. et al. Archaeogenomic evidence reveals prehistoric matrilineal dynasty. Nat. Commun. 8, 14115 (2017).
pubmed: 28221340
pmcid: 5321759
doi: 10.1038/ncomms14115
Corrain, Cleto. I resti scheletrici umani della sepoltura epigravettiana del Riparo Tagliente in Valpantena (Verona). Boll Mus Civ Storia Nat Verona 4, 35–79 (1977).
Craig, O. E. et al. Stable isotope analysis of Late Upper Palaeolithic human and faunal remains from Grotta del Romito (Cosenza), Italy. J. Archaeol. Sci. 37, 2504–2512 (2010).
doi: 10.1016/j.jas.2010.05.010
Männel, T. T., Auerswald, K. & Schnyder, H. Altitudinal gradients of grassland carbon and nitrogen isotope composition are recorded in the hair of grazers. Glob. Ecol. Biogeogr. 16, 583–592 (2007).
doi: 10.1111/j.1466-8238.2007.00322.x
Richards, M. P., Karavanić, I., Pettitt, P. & Miracle, P. Isotope and faunal evidence for high levels of freshwater fish consumption by Late Glacial humans at the Late Upper Palaeolithic site of Šandalja II, Istria, Croatia. J. Archaeol. Sci. 61, 204–212 (2015).
doi: 10.1016/j.jas.2015.06.008
Clauzel, T. et al. Climate conditions and dietary practices during the Second Iron Age studied through the multi-isotope analysis of bones and teeth from individuals of Thézy-Glimont, Picardie, France. Archaeol. Anthropol. Sci. 14, 61 (2022).
doi: 10.1007/s12520-022-01534-1
Kromer, B., Lindauer, S., Synal, H.-A. & Wacker, L. MAMS – a new AMS facility at the Curt-Engelhorn-Centre for Achaeometry, Mannheim, Germany. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 294, 11–13 (2013).
doi: 10.1016/j.nimb.2012.01.015
Schulze-König, T., Seiler, M., Suter, M., Wacker, L. & Synal, H.-A. The dissociation of 13CH and 12CH2 molecules in He and N2 at beam energies of 80–250keV and possible implications for radiocarbon mass spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 269, 34–39 (2011).
doi: 10.1016/j.nimb.2010.09.015
Maxeiner, S., Seiler, M., Suter, M. & Synal, H.-A. Charge state distributions and charge exchange cross sections of carbon in helium at 30–258keV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 361, 541–547 (2015).
doi: 10.1016/j.nimb.2015.02.060
Wacker, L., Němec, M. & Bourquin, J. A revolutionary graphitisation system: fully automated, compact and simple. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. 268, 931–934 (2010).
doi: 10.1016/j.nimb.2009.10.067
Wacker, L. et al. MICADAS: routine and high-precision radiocarbon dating. Radiocarbon 52, 252–262 (2010).
doi: 10.1017/S0033822200045288
Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 5, 820–825 (2021).
pubmed: 33828249
pmcid: 8175239
doi: 10.1038/s41559-021-01443-x
Moreiras Reynaga, D. K., Munizzi, J. S., McMillan, R., Millaire, J.-F. & Longstaffe, F. J. Effects of consolidants and their removal by polar solvents on the stable isotope compositions of bone. Quat. Int. 660, 31–41 (2023).
doi: 10.1016/j.quaint.2022.12.004
Schellmann, N. C. Animal glues: a review of their key properties relevant to conservation. Stud. Conserv. 52, 55–66 (2007).
doi: 10.1179/sic.2007.52.Supplement-1.55
Tassoni, L. et al. Safe preparation and delivery of graphite targets for 14C analysis: procedures of BRAVHO lab at Bologna University. Radiocarbon https://doi.org/10.1017/RDC.2023.43 (2023).
Ramsey, C. B. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51, 1023–1045 (2009).
doi: 10.1017/S0033822200034093
Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).
doi: 10.1017/RDC.2020.41
DeNiro, M. J. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317, 806–809 (1985).
doi: 10.1038/317806a0
Ambrose, S. H. Preparation and characterization of bone and tooth collagen for isotopic analysis. J. Archaeol. Sci. 17, 431–451 (1990).
doi: 10.1016/0305-4403(90)90007-R
Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758–15763 (2013).
pubmed: 24019490
pmcid: 3785785
doi: 10.1073/pnas.1314445110
Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130624 (2015).
Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).
pubmed: 26098372
pmcid: 4537386
doi: 10.1038/nature14558
Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).
pubmed: 27036623
pmcid: 4815194
doi: 10.1186/s13059-016-0918-z
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
pubmed: 26868221
pmcid: 4751634
doi: 10.1186/s13104-016-1900-2
Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinform. Oxf. Engl. 25, 1754–1760 (2009).
doi: 10.1093/bioinformatics/btp324
Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. L. F. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).
pubmed: 23613487
pmcid: 3694634
doi: 10.1093/bioinformatics/btt193
Jun, G., Wing, M. K., Abecasis, G. R. & Kang, H. M. An efficient and scalable analysis framework for variant extraction and refinement from population-scale DNA sequence data. Genome Res. 25, 918–925 (2015).
pubmed: 25883319
pmcid: 4448687
doi: 10.1101/gr.176552.114
Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinform. 15, 356 (2014).
doi: 10.1186/s12859-014-0356-4
Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).
pubmed: 26458810
pmcid: 4601135
doi: 10.1186/s13059-015-0776-0
Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
pubmed: 27084951
doi: 10.1093/nar/gkw233
Ralf, A., Montiel González, D., Zhong, K. & Kayser, M. Yleaf: software for human Y-chromosomal haplogroup inference from next-generation sequencing data. Mol. Biol. Evol. 35, 1291–1294 (2018).
pubmed: 29518227
doi: 10.1093/molbev/msy032
Antonio, M. L. et al. Ancient Rome: a genetic crossroads of Europe and the Mediterranean. Science 366, 708–714 (2019).
pubmed: 31699931
pmcid: 7093155
doi: 10.1126/science.aay6826
Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).
pubmed: 29466330
pmcid: 6091220
doi: 10.1038/nature25778
Skoglund, P. et al. Separating endogenous ancient DNA from modern day contamination in a Siberian Neandertal. Proc. Natl Acad. Sci. USA 111, 2229–2234 (2014).
pubmed: 24469802
pmcid: 3926038
doi: 10.1073/pnas.1318934111
Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012).
pubmed: 22960212
doi: 10.1534/genetics.112.145037