ZC3HAV1 facilitates STING activation and enhances inflammation.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 17 03 2024
accepted: 21 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Stimulator of interferon genes (STING) is vital in the cytosolic DNA-sensing process and critical for initiating the innate immune response, which has important functions in host defense and contributes to the pathogenesis of inflammatory diseases. Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1) specifically binds the CpG dinucleotides in the viral RNAs of multiple viruses and promotes their degradation. ZAPS (ZC3HAV1 short isoform) is a potent stimulator of retinoid acid-inducible gene I (RIG-I) signaling during the antiviral response. However, how ZC3HAV1 controls STING signaling is unclear. Here, we show that ZC3HAV1 specifically potentiates STING activation by associating with STING to promote its oligomerization and translocation from the endoplasmic reticulum (ER) to the Golgi, which facilitates activation of IRF3 and NF-κB pathway. Accordingly, Zc3hav1 deficiency protects mice against herpes simplex virus-1 (HSV-1) infection- or 5,6-dimethylxanthenone-4-acetic acid (DMXAA)-induced inflammation in a STING-dependent manner. These results indicate that ZC3HAV1 is a key regulator of STING signaling, which suggests its possible use as a therapeutic target for STING-dependent inflammation.

Identifiants

pubmed: 39478149
doi: 10.1038/s42003-024-07116-2
pii: 10.1038/s42003-024-07116-2
doi:

Substances chimiques

Membrane Proteins 0
Sting1 protein, mouse 0
STING1 protein, human 0
Interferon Regulatory Factor-3 0
NF-kappa B 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1418

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82172276
Organisme : Natural Science Foundation of Shandong Province (Shandong Provincial Natural Science Foundation)
ID : ZR2023LZL007
Organisme : Natural Science Foundation of Shandong Province (Shandong Provincial Natural Science Foundation)
ID : ZR2022QH032
Organisme : Natural Science Foundation of Shandong Province (Shandong Provincial Natural Science Foundation)
ID : ZR2020MH087

Informations de copyright

© 2024. The Author(s).

Références

Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).
pubmed: 23258413 doi: 10.1126/science.1232458
Ablasser, A. et al. cGAS produces a 2’-5’-linked cyclic dinucleotide second messenger that activates STING. Nature 498, 380–384 (2013).
pubmed: 23722158 doi: 10.1038/nature12306
Ishikawa, H. & Barber, G. N. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 674–678 (2008).
pubmed: 18724357 pmcid: 2804933 doi: 10.1038/nature07317
Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).
pubmed: 18818105 doi: 10.1016/j.immuni.2008.09.003
Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl Acad. Sci. USA 106, 8653–8658 (2009).
pubmed: 19433799 pmcid: 2689030 doi: 10.1073/pnas.0900850106
Jin, L. et al. MPYS, a novel membrane tetraspanner, is associated with major histocompatibility complex class II and mediates transduction of apoptotic signals. Mol. Cell Biol. 28, 5014–5026 (2008).
pubmed: 18559423 pmcid: 2519703 doi: 10.1128/MCB.00640-08
Wu, J. et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339, 826–830 (2013).
pubmed: 23258412 doi: 10.1126/science.1229963
Ishii, K. J. et al. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451, 725–729 (2008).
pubmed: 18256672 doi: 10.1038/nature06537
Zhang, X., Bai, X. C. & Chen, Z. J. Structures and Mechanisms in the cGAS-STING Innate Immunity Pathway. Immunity 53, 43–53 (2020).
pubmed: 32668227 doi: 10.1016/j.immuni.2020.05.013
Darnell, J. J., Kerr, I. M. & Stark, G. R. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264, 1415–1421 (1994).
pubmed: 8197455 doi: 10.1126/science.8197455
Dunphy, G. et al. Non-canonical Activation of the DNA Sensing Adaptor STING by ATM and IFI16 Mediates NF-kappaB Signaling after Nuclear DNA Damage. Mol. Cell 71, 745–760.e5 (2018).
pubmed: 30193098 pmcid: 6127031 doi: 10.1016/j.molcel.2018.07.034
Hou, Y. et al. Non-canonical NF-kappaB Antagonizes STING Sensor-Mediated DNA Sensing in Radiotherapy. Immunity 49, 490–503.e4 (2018).
pubmed: 30170810 pmcid: 6775781 doi: 10.1016/j.immuni.2018.07.008
Mulero, M. C., Huxford, T. & Ghosh, G. NF-kappaB, IkappaB, and IKK: integral components of immune system signaling. Adv. Exp. Med. Biol. 1172, 207–226 (2019).
pubmed: 31628658 doi: 10.1007/978-981-13-9367-9_10
Tsuchida, T. et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity 33, 765–776 (2010).
pubmed: 21074459 doi: 10.1016/j.immuni.2010.10.013
Sun, M. S. et al. TMED2 potentiates cellular IFN responses to DNA viruses by reinforcing MITA dimerization and facilitating its trafficking. Cell Rep. 25, 3086–3098.e3 (2018).
pubmed: 30540941 doi: 10.1016/j.celrep.2018.11.048
Wang, X. et al. STING requires the adaptor TRIF to trigger innate immune responses to microbial infection. Cell Host Microbe 20, 329–341 (2016).
pubmed: 27631700 pmcid: 5026396 doi: 10.1016/j.chom.2016.08.002
Zou, H. M., et al. Human Cytomegalovirus Protein UL94 Targets MITA to evade the antiviral immune response. J. Virol. 94, 10–1128 (2020).
MacDonald, M. R., Machlin, E. S., Albin, O. R. & Levy, D. E. The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. J Virol 81, 13509–13518 (2007).
pubmed: 17928353 pmcid: 2168828 doi: 10.1128/JVI.00402-07
Gao, G., Guo, X. & Goff, S. P. Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297, 1703–1706 (2002).
pubmed: 12215647 doi: 10.1126/science.1074276
Wang, N. et al. Viral induction of the zinc finger antiviral protein is IRF3-dependent but NF-kappaB-independent. J. Biol. Chem. 285, 6080–6090 (2010).
pubmed: 20048147 pmcid: 2825402 doi: 10.1074/jbc.M109.054486
Muller, S. et al. Inhibition of filovirus replication by the zinc finger antiviral protein. J. Virol. 81, 2391–2400 (2007).
pubmed: 17182693 doi: 10.1128/JVI.01601-06
Liu, C. H., Zhou, L., Chen, G. & Krug, R. M. Battle between influenza A virus and a newly identified antiviral activity of the PARP-containing ZAPL protein. Proc. Natl Acad. Sci. USA 112, 14048–14053 (2015).
pubmed: 26504237 pmcid: 4653199 doi: 10.1073/pnas.1509745112
Bick, M. J. et al. Expression of the zinc-finger antiviral protein inhibits alphavirus replication. J. Virol. 77, 11555–11562 (2003).
pubmed: 14557641 pmcid: 229374 doi: 10.1128/JVI.77.21.11555-11562.2003
Zhu, Y. et al. Zinc-finger antiviral protein inhibits HIV-1 infection by selectively targeting multiply spliced viral mRNAs for degradation. Proc. Natl Acad. Sci. USA 108, 15834–15839 (2011).
pubmed: 21876179 pmcid: 3179061 doi: 10.1073/pnas.1101676108
Guo, X., Carroll, J. W., Macdonald, M. R., Goff, S. P. & Gao, G. The zinc finger antiviral protein directly binds to specific viral mRNAs through the CCCH zinc finger motifs. J. Virol. 78, 12781–12787 (2004).
pubmed: 15542630 pmcid: 525010 doi: 10.1128/JVI.78.23.12781-12787.2004
Kerns, J. A., Emerman, M. & Malik, H. S. Positive selection and increased antiviral activity associated with the PARP-containing isoform of human zinc-finger antiviral protein. PLoS Genet. 4, e21 (2008).
pubmed: 18225958 pmcid: 2213710 doi: 10.1371/journal.pgen.0040021
Luo, X. et al. Molecular mechanism of RNA recognition by Zinc-Finger antiviral protein. Cell Rep. 30, 46–52.e4 (2020).
pubmed: 31914396 doi: 10.1016/j.celrep.2019.11.116
Takata, M. A. et al. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 550, 124–127 (2017).
pubmed: 28953888 pmcid: 6592701 doi: 10.1038/nature24039
Zhu, Y., Wang, X., Goff, S. P. & Gao, G. Translational repression precedes and is required for ZAP-mediated mRNA decay. EMBO J. 31, 4236–4246 (2012).
pubmed: 23023399 pmcid: 3492732 doi: 10.1038/emboj.2012.271
Chen, S. et al. Structure of N-terminal domain of ZAP indicates how a zinc-finger protein recognizes complex RNA. Nat. Struct. Mol. Biol. 19, 430–435 (2012).
pubmed: 22407013 doi: 10.1038/nsmb.2243
Goncalves-Carneiro, D. et al. Rational attenuation of RNA viruses with zinc finger antiviral protein. Nat. Microbiol. 7, 1558–1567 (2022).
pubmed: 36075961 pmcid: 9519448 doi: 10.1038/s41564-022-01223-8
Meagher, J. L. et al. Structure of the zinc-finger antiviral protein in complex with RNA reveals a mechanism for selective targeting of CG-rich viral sequences. Proc. Natl Acad. Sci. USA 116, 24303–24309 (2019).
pubmed: 31719195 pmcid: 6883784 doi: 10.1073/pnas.1913232116
Glasker, S., Toller, M. & Kummerer, B. M. The alternate triad motif of the poly(ADP-ribose) polymerase-like domain of the human zinc finger antiviral protein is essential for its antiviral activity. J. Gen. Virol. 95, 816–822 (2014).
pubmed: 24457973 doi: 10.1099/vir.0.060988-0
Hayakawa, S. et al. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat. Immunol. 12, 37–44 (2011).
pubmed: 21102435 doi: 10.1038/ni.1963
Schwerk, J. et al. RNA-binding protein isoforms ZAP-S and ZAP-L have distinct antiviral and immune resolution functions. Nat. Immunol. 20, 1610–1620 (2019).
pubmed: 31740798 pmcid: 7240801 doi: 10.1038/s41590-019-0527-6
Zhang, B. C. et al. STEEP mediates STING ER exit and activation of signaling. Nat. Immunol. 21, 868–879 (2020).
pubmed: 32690950 pmcid: 7610351 doi: 10.1038/s41590-020-0730-5
Mukai, K. et al. Activation of STING requires palmitoylation at the Golgi. Nat. Commun. 7, 11932 (2016).
pubmed: 27324217 pmcid: 4919521 doi: 10.1038/ncomms11932
Shang, G., Zhang, C., Chen, Z. J., Bai, X. C. & Zhang, X. Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP-AMP. Nature 567, 389–393 (2019).
pubmed: 30842659 pmcid: 6859894 doi: 10.1038/s41586-019-0998-5
Ergun, S. L., Fernandez, D., Weiss, T. M. & Li, L. STING polymer structure reveals mechanisms for activation, hyperactivation, and inhibition. Cell 178, 290–301.e10 (2019).
pubmed: 31230712 doi: 10.1016/j.cell.2019.05.036
Lu, D. et al. Activation of STING by targeting a pocket in the transmembrane domain. Nature 604, 557–562 (2022).
pubmed: 35388221 pmcid: 9098198 doi: 10.1038/s41586-022-04559-7
Fang, R. et al. Golgi apparatus-synthesized sulfated glycosaminoglycans mediate polymerization and activation of the cGAMP sensor STING. Immunity 54, 962–975.e8 (2021).
pubmed: 33857420 doi: 10.1016/j.immuni.2021.03.011
Song, P. et al. UNC13D inhibits STING signaling by attenuating its oligomerization on the endoplasmic reticulum. EMBO Rep. 23, e55099 (2022).
pubmed: 36125406 pmcid: 9638857 doi: 10.15252/embr.202255099
Ye, G. et al. African Swine Fever Virus H240R protein inhibits the production of Type I Interferon through disrupting the oligomerization of STING. J. Virol. 97, e0057723 (2023).
Gonzalez-Perez, A. C. et al. The Zinc Finger Antiviral Protein ZAP Restricts Human Cytomegalovirus and Selectively Binds and Destabilizes Viral UL4/UL5 Transcripts. mBio. 12, 10–1128 (2021).
Peng, C. et al. Zinc-finger antiviral protein (ZAP) is a restriction factor for replication of modified vaccinia virus Ankara (MVA) in human cells. PLoS Pathog 16, e1008845 (2020).
pubmed: 32866210 pmcid: 7485971 doi: 10.1371/journal.ppat.1008845
Mao, R. et al. Inhibition of hepatitis B virus replication by the host zinc finger antiviral protein. PLoS Pathog 9, e1003494 (2013).
pubmed: 23853601 pmcid: 3708887 doi: 10.1371/journal.ppat.1003494
Barber, G. N. STING: infection, inflammation and cancer. Nat. Rev. Immunol. 15, 760–770 (2015).
pubmed: 26603901 pmcid: 5004891 doi: 10.1038/nri3921
Jeremiah, N. et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J. Clin. Investig. 124, 5516–5520 (2014).
pubmed: 25401470 pmcid: 4348945 doi: 10.1172/JCI79100
Kawane, K., Tanaka, H., Kitahara, Y., Shimaoka, S. & Nagata, S. Cytokine-dependent but acquired immunity-independent arthritis caused by DNA escaped from degradation. Proc. Natl Acad. Sci. USA 107, 19432–19437 (2010).
pubmed: 20974942 pmcid: 2984163 doi: 10.1073/pnas.1010603107
Ahn, J., Gutman, D., Saijo, S. & Barber, G. N. STING manifests self DNA-dependent inflammatory disease. Proc. Natl Acad. Sci. USA 109, 19386–19391 (2012).
pubmed: 23132945 pmcid: 3511090 doi: 10.1073/pnas.1215006109
Haag, S. M. et al. Targeting STING with covalent small-molecule inhibitors. Nature 559, 269–273 (2018).
pubmed: 29973723 doi: 10.1038/s41586-018-0287-8
Jia, M. et al. Redox homeostasis maintained by GPX4 facilitates STING activation. Nat. Immunol. 21, 727–735 (2020).
pubmed: 32541831 doi: 10.1038/s41590-020-0699-0

Auteurs

Danhui Qin (D)

Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Hui Song (H)

Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Caiwei Wang (C)

Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Xiaojie Ma (X)

Department of Rheumatology and immunology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.

Yu Fu (Y)

Department of Orthopedic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China.

Chunyuan Zhao (C)

Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Wei Zhao (W)

Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.

Lei Zhang (L)

Department of Orthopedic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China. qygkzl1818@163.com.

Weifang Zhang (W)

Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China. zhangweifang@sdu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH