RNA methylation patterns of tumor microenvironment cells regulate prognosis and immunotherapeutic responsiveness in patients with triple-negative breast cancer.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
30 10 2024
Historique:
received: 04 03 2024
accepted: 28 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Immunotherapy research focuses on reshaping the tumor microenvironment (TME) to enhance its antitumor immune responses, with an emphasis on understanding the impact of RNA methylation in triple-negative breast cancer (TNBC) TME regulation. This study explored the influence of various RNA methyltransferases on TME cells in TNBC and their correlation with prognosis and immunotherapy response. Using non-negative matrix factorization on single-cell RNA-sequencing data, distinct TME cell clusters were identified based on the expression of 30 RNA methyltransferases. Various analyses, including pseudotime, cell communication, transcription factor regulatory network, and gene enrichment, were conducted on these clusters. The roles of RNA methyltransferase-mediated TME clusters in prognosis and immunotherapy response were determined using TNBC bulk RNA-Seq data, and the findings were validated through immunofluorescence analysis of a tissue microarray comprising 87 samples. Spatial transcriptomic analysis further revealed the distribution of TME cell clusters. Different methyltransferase-mediated cell clusters exhibited unique metabolic, immune, transcriptional, and intercellular communication patterns. Survival analysis indicated prognostic significance in specific TME cell clusters, and immunofluorescence analysis confirmed the prognostic value of m6A_WTAP + CD8T + cells. In conclusion, our study illustrated the involvement of these cell subgroups in tumor growth and antitumor immunity modulation, providing insights into the enhancement of TNBC immunotherapy.

Identifiants

pubmed: 39478153
doi: 10.1038/s41598-024-77941-2
pii: 10.1038/s41598-024-77941-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26075

Subventions

Organisme : Medical Innovation Project Foundation of Fujian Province, PRC
ID : 2021CXA045
Organisme : Science and Technology Innovation Joint Fund Project of Fujian Province
ID : 2019Y9049
Organisme : Quanzhou City Science and Technology Program
ID : 2020C047R
Organisme : Wu Jieping Medical Foundation
ID : 320.6750.2021-10-60

Informations de copyright

© 2024. The Author(s).

Références

Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. Cancer J. Clin. 72, (2022).
Bianchini, G., De Angelis, C., Licata, L. & Gianni, L. Treatment landscape of triple-negative breast cancer - expanded options, evolving needs. Nat. Rev. Clin. Oncol. 19, (2022).
Nolan, E., Lindeman, G. J. & Visvader, J. E. Deciphering breast cancer: from biology to the clinic. Cell. (2023).
Schmid, P. et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N Engl. J. Med. 386, 556–567 (2022).
pubmed: 35139274 doi: 10.1056/NEJMoa2112651
Shi, H., Chai, P., Jia, R. & Fan, X. Novel insight into the regulatory roles of diverse RNA modifications: Re-defining the bridge between transcription and translation. Mol. Cancer. 19, 78 (2020).
pubmed: 32303268 doi: 10.1186/s12943-020-01194-6
Barbieri, I. & Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer. 20, 303–322 (2020).
pubmed: 32300195 doi: 10.1038/s41568-020-0253-2
Cui, L. et al. RNA modifications: importance in immune cell biology and related diseases. Signal. Transduct. Target. Ther. 7, 334 (2022).
pubmed: 36138023 doi: 10.1038/s41392-022-01175-9
Shi, H., Wei, J. & He, C. Where, when, and how: context-dependent functions of RNA methylation writers, readers, and erasers. Mol. Cell. 74, 640–650 (2019).
pubmed: 31100245 doi: 10.1016/j.molcel.2019.04.025
Zaccara, S., Ries, R. J. & Jaffrey, S. R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell. Biol. 20, 608–624 (2019).
pubmed: 31520073 doi: 10.1038/s41580-019-0168-5
Zhang, Y. et al. DirectRMDB: a database of post-transcriptional RNA modifications unveiled from direct RNA sequencing technology. Nucleic Acids Res. 51, D106–D116 (2023).
pubmed: 36382409 doi: 10.1093/nar/gkac1061
Chen, Y., Lin, Y., Shu, Y., He, J. & Gao, W. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer. Mol. Cancer. 19 (2020).
Huang, H., Weng, H. & Chen, J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer. Cancer Cell. 37, 270–288 (2020).
pubmed: 32183948 doi: 10.1016/j.ccell.2020.02.004
Bohnsack, K. E., Höbartner, C. & Bohnsack, M. T. Eukaryotic 5-methylcytosine (m5C) RNA methyltransferases: mechanisms, cellular functions, and links to disease. Genes. 10, (2019).
Ma, J. et al. m5C-Atlas: a comprehensive database for decoding and annotating the 5-methylcytosine (m5C) epitranscriptome. Nucleic Acids Res. 50, D196–D203 (2022).
pubmed: 34986603 doi: 10.1093/nar/gkab1075
Trixl, L. & Lusser, A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip Rev. RNA. 10, e1510 (2019).
pubmed: 30311405 doi: 10.1002/wrna.1510
Shinoda, S. et al. Mammalian NSUN2 introduces 5-methylcytidines into mitochondrial tRNAs. Nucleic Acids Res. 47, 8734–8745 (2019).
pubmed: 31287866 doi: 10.1093/nar/gkz575
Wiener, D. & Schwartz, S. The epitranscriptome beyond m6A. Nat. Rev. Genet. 22, 119–131 (2021).
pubmed: 33188361 doi: 10.1038/s41576-020-00295-8
Safra, M. et al. The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature. 551, 251–255 (2017).
pubmed: 29072297 doi: 10.1038/nature24456
Luo, Y. et al. The potential role of N7-methylguanosine (m7G) in cancer. J. Hematol. Oncol. 15, (2022).
Adams, S. et al. Current landscape of immunotherapy in breast cancer: a review. JAMA Oncol. 5, 1205–1214 (2019).
pubmed: 30973611 doi: 10.1001/jamaoncol.2018.7147
Dong, L. et al. The loss of RNA N6-adenosine methyltransferase Mettl14 in tumor-associated macrophages promotes CD8 + T cell dysfunction and tumor growth. Cancer Cell. 39, (2021).
Wang, H. et al. Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat. Commun. 10, 1898 (2019).
pubmed: 31015515 doi: 10.1038/s41467-019-09903-6
Galloway, A. et al. Upregulation of RNA cap methyltransferase RNMT drives ribosome biogenesis during T cell activation. Nucleic Acids Res. 49, 6722–6738 (2021).
pubmed: 34125914 doi: 10.1093/nar/gkab465
Zheng, Z. et al. Control of early B cell development by the RNA N6-methyladenosine methylation. Cell. Rep. 31, 107819 (2020).
pubmed: 32610122 doi: 10.1016/j.celrep.2020.107819
Wu, S. Z. et al. A single-cell and spatially resolved atlas of human breast cancers. Nat. Genet. 53, 1334–1347 (2021).
pubmed: 34493872 doi: 10.1038/s41588-021-00911-1
Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods. 14, 979–982 (2017).
pubmed: 28825705 doi: 10.1038/nmeth.4402
Mahoney, K. M., Rennert, P. D. & Freeman, G. J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 14, 561–584 (2015).
pubmed: 26228759 doi: 10.1038/nrd4591
Gao, Y. et al. Single-cell N-methyladenosine regulator patterns guide intercellular communication of tumor microenvironment that contribute to colorectal cancer progression and immunotherapy. J. Translational Med. 20, 197 (2022).
doi: 10.1186/s12967-022-03395-7
Beltra, J-C. et al., Developmental relationships of four exhausted CD8 + T cell subsets reveals underlying transcriptional and epigenetic landscape control mechanisms. Immunity. 52, (2020).
Charoentong, P. et al. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade. Cell. Rep. 18, 248–262 (2017).
pubmed: 28052254 doi: 10.1016/j.celrep.2016.12.019
Zeng, D. et al. Multi-Omics Immuno-Oncology Biological Research to Decode Tumor Microenvironment and Signatures. Front. Immunol. 12, 687975 (2021).
pubmed: 34276676 doi: 10.3389/fimmu.2021.687975
Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 160, 48–61 (2015).
pubmed: 25594174 doi: 10.1016/j.cell.2014.12.033
Jin, S. et al. Inference and analysis of cell-cell communication using CellChat. Nat. Commun. 12, 1088 (2021).
pubmed: 33597522 pmcid: 7889871 doi: 10.1038/s41467-021-21246-9
Aibar, S. et al. SCENIC: single-cell regulatory network inference and clustering. Nat. Methods. 14, 1083–1086 (2017).
pubmed: 28991892 doi: 10.1038/nmeth.4463
Wu, Y. et al. Spatiotemporal immune landscape of colorectal cancer liver metastasis at single-cell level. Cancer Discov. 12, 134–153 (2022).
pubmed: 34417225 doi: 10.1158/2159-8290.CD-21-0316
Newman, A. M. et al. Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotechnol. 37, 773–782 (2019).
pubmed: 31061481 doi: 10.1038/s41587-019-0114-2
Jiang, P. et al. Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat. Med. 24, 1550–1558 (2018).
pubmed: 30127393 doi: 10.1038/s41591-018-0136-1
An, Y. & Duan, H. The role of m6A RNA methylation in cancer metabolism. Mol. Cancer 21, (2022).
Li, M. et al. 5-methylcytosine RNA methyltransferases and their potential roles in cancer. J. Translational Med. 20, 214 (2022).
doi: 10.1186/s12967-022-03427-2
Wu, S. Z. et al. Stromal cell diversity associated with immune evasion in human triple-negative breast cancer. EMBO J. 39, e104063 (2020).
pubmed: 32790115 doi: 10.15252/embj.2019104063
Kalluri, R. The biology and function of fibroblasts in cancer. Nat. Rev. Cancer. 16, 582–598 (2016).
pubmed: 27550820 doi: 10.1038/nrc.2016.73
Cassetta, L. et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 35, (2019).
Hu, Q. et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat. Commun. 12, 2186 (2021).
pubmed: 33846305 doi: 10.1038/s41467-021-22300-2
Loi, S. et al. Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann. Oncol. 25, 1544–1550 (2014).
pubmed: 24608200 doi: 10.1093/annonc/mdu112
Jhunjhunwala, S., Hammer, C. & Delamarre, L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat. Rev. Cancer. 21, 298–312 (2021).
pubmed: 33750922 doi: 10.1038/s41568-021-00339-z
Yin, H. et al. RNA m6A methylation orchestrates cancer growth and metastasis via macrophage reprogramming. Nat. Commun. 12, 1394 (2021).
pubmed: 33654093 doi: 10.1038/s41467-021-21514-8
Song, H. et al. METTL3-mediated m6A RNA methylation promotes the anti-tumour immunity of natural killer cells. Nat. Commun. 12, 5522 (2021).
pubmed: 34535671 doi: 10.1038/s41467-021-25803-0
Han, D. et al. Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells. Nature. 566, 270–274 (2019).
pubmed: 30728504 doi: 10.1038/s41586-019-0916-x
Tong, J. et al. m6A mRNA methylation sustains Treg suppressive functions. Cell. Res. 28, 253–256 (2018).
pubmed: 29303144 doi: 10.1038/cr.2018.7
Wei, W-F. et al. Periostin + cancer-associated fibroblasts promote lymph node metastasis by impairing the lymphatic endothelial barriers in cervical squamous cell carcinoma. Mol. Oncol. 15, 210–227 (2021).
pubmed: 33124726 doi: 10.1002/1878-0261.12837
Chen, X. & Song, E. Turning foes to friends: targeting cancer-associated fibroblasts. Nat. Rev. Drug Discov 18, (2019).
Kanzaki, R. & Pietras, K. Heterogeneity of cancer-associated fibroblasts: Opportunities for precision medicine. Cancer Sci. 111, 2708–2717 (2020).
pubmed: 32573845 doi: 10.1111/cas.14537
Tong, J. et al. Pooled CRISPR screening identifies m6A as a positive regulator of macrophage activation. Sci. Adv. 7, (2021).
Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell. Metab. 30, 36–50 (2019).
pubmed: 31269428 doi: 10.1016/j.cmet.2019.06.001
Arts, R. J. W. et al. Transcriptional and metabolic reprogramming induce an inflammatory phenotype in non-medullary thyroid carcinoma-induced macrophages. Oncoimmunology. 5, e1229725 (2016).
pubmed: 28123869 doi: 10.1080/2162402X.2016.1229725
Wenes, M. et al. Macrophage metabolism controls tumor blood vessel morphogenesis and metastasis. Cell. Metab. 24, 701–715 (2016).
pubmed: 27773694 doi: 10.1016/j.cmet.2016.09.008
Pauwels, A. M., Trost, M., Beyaert, R. & Hoffmann, E. Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 38, 407–422 (2017).
pubmed: 28416446 doi: 10.1016/j.it.2017.03.006
Gutiérrez, S. et al. Salmonella Typhimurium impairs glycolysis-mediated acidification of phagosomes to evade macrophage defense. PLoS Pathog. 17, e1009943 (2021).
pubmed: 34555129 doi: 10.1371/journal.ppat.1009943
Liu, Z. et al. Lipid-associated macrophages in the tumor-adipose microenvironment facilitate breast cancer progression. Oncoimmunology. 11, 2085432 (2022).
pubmed: 35712121 doi: 10.1080/2162402X.2022.2085432
Philip, M. & Schietinger, A. CD8 + T cell differentiation and dysfunction in cancer. Nat. Rev. Immunol. 22, 209–223 (2022).
pubmed: 34253904 doi: 10.1038/s41577-021-00574-3
Hildner, K. et al. Batf3 deficiency reveals a critical role for CD8alpha + dendritic cells in cytotoxic T cell immunity. Science. 322, 1097–1100 (2008).
pubmed: 19008445 doi: 10.1126/science.1164206
Ding, S. et al. Single-cell atlas reveals a distinct immune profile fostered by T cell-B cell crosstalk in triple negative breast cancer. Cancer Commun. (Lond). 43, 661–684 (2023).
pubmed: 37158690 doi: 10.1002/cac2.12429
Schumacher, T. N. & Thommen, D. S. Tertiary lymphoid structures in cancer. Science. 375, eabf9419 (2022).
pubmed: 34990248 doi: 10.1126/science.abf9419
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
pubmed: 35022204 doi: 10.1158/2159-8290.CD-21-1059

Auteurs

Tingjun Li (T)

The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China.

Yiqin Huang (Y)

The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China.

Shien Cui (S)

Breast Center of Zhongshan City People's Hospital, Zhongshan, China.

Zhipeng Hong (Z)

Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China.

Xinhai Zhang (X)

The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China.

Zhihao Li (Z)

The School of Clinical Medicine, Fujian Medical University, Fuzhou, China.
Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China.

Kunqi Chen (K)

Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China. kunqi.chen@fjmu.edu.cn.

Debo Chen (D)

The School of Clinical Medicine, Fujian Medical University, Fuzhou, China. debochensr@fjmu.edu.cn.
Department of Breast Surgery, Quanzhou First Hospital of Fujian Medical University, Quanzhou, China. debochensr@fjmu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH