Protocells by spontaneous reaction of cysteine with short-chain thioesters.


Journal

Nature chemistry
ISSN: 1755-4349
Titre abrégé: Nat Chem
Pays: England
ID NLM: 101499734

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 16 02 2024
accepted: 07 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: aheadofprint

Résumé

All known forms of life are composed of cells, whose boundaries are defined by lipid membranes that separate and protect cell contents from the environment. It is unknown how the earliest forms of life were compartmentalized. Several models have suggested a role for single-chain lipids such as fatty acids, but the membranes formed are often unstable, particularly when made from shorter alkyl chains (≤C

Identifiants

pubmed: 39478161
doi: 10.1038/s41557-024-01666-y
pii: 10.1038/s41557-024-01666-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : National Science Foundation (NSF)
ID : EF-1935372
Organisme : National Science Foundation (NSF)
ID : EF-1935372
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : R35-GM141939

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Devaraj, N. K. In situ synthesis of phospholipid membranes. J. Org. Chem. 82, 5997–6005 (2017).
pubmed: 28467841 doi: 10.1021/acs.joc.7b00604
Dowhan, W. A retrospective: use of Escherichia coli as a vehicle to study phospholipid synthesis and function. Biochim. Biophys. Acta 1831, 471–494 (2013).
pubmed: 22925633 doi: 10.1016/j.bbalip.2012.08.007
Vance, J. E. Phospholipid synthesis and transport in mammalian cells. Traffic 16, 1–18 (2015).
pubmed: 25243850 doi: 10.1111/tra.12230
Deamer, D. The role of lipid membranes in life’s origin. Life 7, 5 (2017).
pubmed: 28106741 pmcid: 5370405 doi: 10.3390/life7010005
Luisi, P. L., Walde, P. & Oberholzer, T. Lipid vesicles as possible intermediates in the origin of life. Curr. Opin. Colloid Interface Sci. 4, 33–39 (1999).
doi: 10.1016/S1359-0294(99)00012-6
Chen, I. A. & Walde, P. From self-assembled vesicles to protocells. Cold Spring Harb. Perspect. Biol. 2, 1–13 (2010).
doi: 10.1101/cshperspect.a002170
Szostak, J. W., Bartel, D. P. & Luisi, P. L. Synthesizing life. Nature 409, 387–390 (2001).
pubmed: 11201752 doi: 10.1038/35053176
Zepik, H. H., Walde, P. & Ishikawa, T. Vesicle formation from reactive surfactants. Angew. Chem. Int. Ed. 47, 1323–1325 (2008).
doi: 10.1002/anie.200704022
Huang, Y. et al. Molecular and compound-specific isotopic characterization of monocarboxylic acids in carbonaceous meteorites. Geochim. Cosmochim. Acta 69, 1073–1084 (2005).
doi: 10.1016/j.gca.2004.07.030
Yuen, G. U. & Kvenvolden, K. A. Monocarboxylic acids in Murray and Murchison carbonaceous meteorites. Nature 246, 301–303 (1973).
doi: 10.1038/246301a0
Mccollom, T. M., Ritter, G. & Simoneit, B. R. T. Lipid synthesis under hydrothermal conditions by Fischer–Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153–166 (1999).
pubmed: 10227201 doi: 10.1023/A:1006592502746
Lai, J. C.-Y., Pearce, B. K. D., Pudritz, R. E. & Lee, D. Meteoritic abundances of fatty acids and potential reaction pathways in planetesimals. Icarus 319, 685–700 (2019).
doi: 10.1016/j.icarus.2018.09.028
Wang, A. & Szostak, J. W. Lipid constituents of model protocell membranes. Emerg. Top. Life. Sci. 3, 537–542 (2019).
pubmed: 33523161 doi: 10.1042/ETLS20190021
Monnard, P.-A. & Deamer, D. W. Membrane self-assembly processes: steps toward the first cellular life. Anat. Rec. 268, 196–207 (2002).
pubmed: 12382318 doi: 10.1002/ar.10154
Deamer, D. W. Boundary structures are formed by organic components of the Murchison carbonaceous chondrite. Nature 317, 792–794 (1985).
doi: 10.1038/317792a0
Budin, I., Bruckner, R. J. & Szostak, J. W. Formation of protocell-like vesicles in a thermal diffusion column. J. Am. Chem. Soc. 131, 9628–9629 (2009).
pubmed: 19601679 pmcid: 2710859 doi: 10.1021/ja9029818
Budin, I., Debnath, A. & Szostak, J. W. Concentration-driven growth of model protocell membranes. J. Am. Chem. Soc. 134, 20812–20819 (2012).
pubmed: 23198690 pmcid: 3530389 doi: 10.1021/ja310382d
Budin, I., Prywes, N., Zhang, N. & Szostak, J. W. Chain-length heterogeneity allows for the assembly of fatty acid vesicles in dilute solutions. Biophys. J. 107, 1582–1590 (2014).
pubmed: 25296310 pmcid: 4190651 doi: 10.1016/j.bpj.2014.07.067
Apel, C. L., Deamer, D. W. & Mautner, M. N. Self-assembled vesicles of monocarboxylic acids and alcohols: conditions for stability and for the encapsulation of biopolymers. Biochim. Biophys. Acta 1559, 1–9 (2002).
pubmed: 11825583 doi: 10.1016/S0005-2736(01)00400-X
Monnard, P.-A., Apel, C. L., Kanavarioti, A. & Deamer, D. W. Influence of ionic inorganic solutes on self-assembly and polymerization processes related to early forms of life: implications for a prebiotic aqueous medium. Astrobiology 2, 139–152 (2002).
pubmed: 12469365 doi: 10.1089/15311070260192237
Namani, T. & Deamer, D. W. Stability of model membranes in extreme environments. Orig. Life. Evol. Biosph. 38, 329–341 (2008).
pubmed: 18560991 doi: 10.1007/s11084-008-9131-8
Jordan, S. F. et al. Promotion of protocell self-assembly from mixed amphiphiles at the origin of life. Nat. Ecol. Evol. 3, 1705–1714 (2019).
pubmed: 31686020 doi: 10.1038/s41559-019-1015-y
Maurer, S. E. et al. Vesicle self-assembly of monoalkyl amphiphiles under the effects of high ionic strength, extreme pH, and high temperature environments. Langmuir 34, 15560–15568 (2018).
pubmed: 30407827 doi: 10.1021/acs.langmuir.8b02830
Maurer, S. E., Deamer, D. W., Boncella, J. M. & Monnard, P.-A. Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9, 979–987 (2009).
pubmed: 20041750 doi: 10.1089/ast.2009.0384
Ourisson, G. & Nakatani, Y. The terpenoid theory of the origin of cellular life: the evolution of terpenoids to cholesterol. Chem. Biol. 1, 11–23 (1994).
pubmed: 9383366 doi: 10.1016/1074-5521(94)90036-1
Plobeck, N., Eifler, S., Brisson, A., Nakatani, Y. & Ourisson, G. Sodium di-polyprenyl phosphates form “primitive” membranes. Tetrahedron Lett. 33, 5249–5252 (1992).
doi: 10.1016/S0040-4039(00)79146-5
Griffith, E. C., Rapf, R. J., Shoemaker, R. K., Carpenter, B. K. & Vaida, V. Photoinitiated synthesis of self-assembled vesicles. J. Am. Chem. Soc. 136, 3784–3787 (2014).
pubmed: 24559493 doi: 10.1021/ja5006256
Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).
pubmed: 29359747 doi: 10.1038/nchem.2878
Bonfio, C. et al. Length-selective synthesis of acylglycerol-phosphates through energy-dissipative cycling. J. Am. Chem. Soc. 141, 3934–3939 (2019).
pubmed: 30767518 pmcid: 6506141 doi: 10.1021/jacs.8b12331
Pulletikurti, S., Veena, K. S., Yadav, M., Deniz, A. A. & Krishnamurthy, R. Experimentally modeling the emergence of prebiotically plausible phospholipid vesicles. Chem 10, 1839–1867 (2024).
doi: 10.1016/j.chempr.2024.02.007
Brea, R. J., Cole, C. M. & Devaraj, N. K. In situ vesicle formation by native chemical ligation. Angew. Chem. Int. Ed. 53, 14102–14105 (2014).
doi: 10.1002/anie.201408538
Brea, R. J., Rudd, A. K. & Devaraj, N. K. Nonenzymatic biomimetic remodeling of phospholipids in synthetic liposomes. Proc. Natl Acad. Sci. USA 113, 8589–8594 (2016).
pubmed: 27439858 pmcid: 4978229 doi: 10.1073/pnas.1605541113
Foden, C. S. et al. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 370, 865–869 (2020).
pubmed: 33184216 doi: 10.1126/science.abd5680
Liu, L. et al. Enzyme-free synthesis of natural phospholipids in water. Nat. Chem. 12, 1029–1034 (2020).
pubmed: 33046841 pmcid: 8849033 doi: 10.1038/s41557-020-00559-0
Hanczyc, M. M., Fujikawa, S. M. & Szostak, J. W. Experimental models of primitive cellular compartments: encapsulation, growth, and division. Science 302, 618–622 (2003).
pubmed: 14576428 pmcid: 4484575 doi: 10.1126/science.1089904
Steinman, G., Kenyon, D. H. & Calvin, M. Dehydration condensation in aqueous solution. Nature 206, 707–708 (1965).
doi: 10.1038/206707a0
Flores, J. et al. Rapid and sequential dual oxime ligation enables de novo formation of functional synthetic membranes from water-soluble precursors. Angew. Chem. Int. Ed. 61, e202200549 (2022).
doi: 10.1002/anie.202200549
Wilcoxen, K. M., Leman, L. J., Weinberger, D. A., Huang, Z.-Z. & Ghadiri, M. R. Biomimetic catalysis of intermodular aminoacyl transfer. J. Am. Chem. Soc. 129, 748–749 (2007).
pubmed: 17243796 pmcid: 2453065 doi: 10.1021/ja067124h
Canne, L. E., Bark, S. J. & Kent, S. B. H. Extending the applicability of native chemical ligation. J. Am. Chem. Soc. 118, 5891–5896 (1996).
doi: 10.1021/ja960398s
Lv, H. et al. Native chemical ligation combined with spirocyclization of benzopyrylium dyes for the ratiometric and selective fluorescence detection of cysteine and homocysteine. Anal. Chem. 86, 1800–1807 (2014).
pubmed: 24410246 doi: 10.1021/ac4038027
Boyd, M. A. & Kamat, N. P. Visualizing tension and growth in model membranes using optical dyes. Biophys. J. 115, 1307–1315 (2018).
pubmed: 30219285 doi: 10.1016/j.bpj.2018.08.021
Richter, R. P., Bérat, R. & Brisson, A. R. Formation of solid-supported lipid bilayers: an integrated view. Langmuir 22, 3497–3505 (2006).
pubmed: 16584220 doi: 10.1021/la052687c
Cremer, P. S. & Boxer, S. G. Formation and spreading of lipid bilayers on planar glass supports. J. Phys. Chem. B 103, 2554–2559 (1999).
doi: 10.1021/jp983996x
Higgs, P. G. & Lehman, N. The RNA world: molecular cooperation at the origins of life. Nat. Rev. Genetics 16, 7–17 (2015).
pubmed: 25385129 doi: 10.1038/nrg3841
Lai, Y.-C., Liu, Z. & Chen, I. A. Encapsulation of ribozymes inside model protocells leads to faster evolutionary adaptation. Proc. Natl Acad. Sci. USA 118, e2025054118 (2021).
pubmed: 34001592 doi: 10.1073/pnas.2025054118
Chen, I. A., Roberts, R. W. & Szostak, J. W. The emergence of competition between model protocells. Science 305, 1474–1476 (2004).
pubmed: 15353806 doi: 10.1126/science.1100757
Brügger, B. et al. The HIV lipidome: a raft with an unusual composition. Proc. Natl Acad. Sci. USA 103, 2641–2646 (2006).
pubmed: 16481622 doi: 10.1073/pnas.0511136103
Shen, Y., Pressman, A., Janzen, E. & Chen, I. A. Kinetic sequencing (k-seq) as a massively parallel assay for ribozyme kinetics: utility and critical parameters. Nucleic Acids Res. 49, e67 (2021).
pubmed: 33772580 pmcid: 8559535 doi: 10.1093/nar/gkab199

Auteurs

Christy J Cho (CJ)

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Taeyang An (T)

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Yei-Chen Lai (YC)

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan.

Alberto Vázquez-Salazar (A)

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.

Alessandro Fracassi (A)

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Roberto J Brea (RJ)

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.

Irene A Chen (IA)

Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.

Neal K Devaraj (NK)

Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA. ndevaraj@ucsd.edu.

Classifications MeSH