Effects of intensive and conventional farming on oxidative stress and meat quality biomarkers in holstein and simmental cattle.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 10 2024
Historique:
received: 23 03 2024
accepted: 28 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

This study investigates the intricate factors influencing meat quality, including breed, rearing conditions, and processing, with a primary focus on oxidative stress in Holstein Friesian and Simmental cattle within conventional and intensive production systems. A notable difference in oxidative stress was found between animals subjected to intensive-farming versus conventional practices, with Holstein cattle showing a more pronounced antioxidant gene response than Simmental. The analysis revealed that intensive rearing conditions resulted in increased DNA repair activity and expression of stress-response proteins like heat shock proteins, suggestive of greater cellular damage and an adaptive stress response. Muscle tissue analyses, revealed a clear distinction in gene expression associated with meat quality between the breeds and the type of farming system. A negative correlation emerged between oxidative stress levels and genes related to muscle development, which affects meat quality. Intensive farming conditions altered the expressions of apoptotic proteins, impacting meat quality at the molecular level. These results underscore the profound effect rearing conditions have on meat quality, driven by stress-related molecular responses. This highlights the need for further research into the influence of husbandry practices on animal welfare and meat quality, with the intention of developing strategies to mitigate the negative consequences of intensive-farming.

Identifiants

pubmed: 39478177
doi: 10.1038/s41598-024-78087-x
pii: 10.1038/s41598-024-78087-x
doi:

Substances chimiques

Biomarkers 0
Antioxidants 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26197

Subventions

Organisme : Scientific Research Projects Coordinatorship of Dicle University
ID : Ziraat.22.007

Informations de copyright

© 2024. The Author(s).

Références

Galka, A. Using a cleaner production preventive strategy for the reduction of the negative environmental impacts of agricultural production using cattle husbandry as a case study. J. Clean. Prod. 12(5), 513–516 (2004).
doi: 10.1016/S0959-6526(03)00108-2
Erb, K. H. et al. Exploring the biophysical option space for feeding the world without deforestation. Nat. Commun. 7(1), 1–9 (2016).
doi: 10.1038/ncomms11382
Ruviaro, C. F. et al. Economic and environmental feasibility of beef production in different feed management systems in the Pampa biome, southern Brazil. Ecol. Ind. 60, 930–939 (2016).
doi: 10.1016/j.ecolind.2015.08.042
Ahlgren, S. et al. Climate and biodiversity impact of beef and lamb production–A case study in Sweden. Agric. Syst. 219, 104047 (2024).
doi: 10.1016/j.agsy.2024.104047
Bragaglio, A. et al. Environmental impacts of Italian beef production: A comparison between different systems. J. Clean. Prod. 172, 4033–4043 (2018).
doi: 10.1016/j.jclepro.2017.03.078
Gill, M., Smith, P. & Wilkinson, J. M. Mitigating climate change: the role of domestic livestock. Animal 4(3), 323–333 (2010).
pubmed: 22443938 doi: 10.1017/S1751731109004662
Webb, E. C. & Erasmus, L. J. The effect of production system and management practices on the quality of meat products from ruminant livestock. South Afr. J Anim. Sci. 43(3), 413–423 (2013).
doi: 10.4314/sajas.v43i3.12
Sumberg, J. & Giller, K. E. What is ‘conventional’ agriculture?. Glob. Food Secur. 32, 100617 (2022).
doi: 10.1016/j.gfs.2022.100617
McAllister, T. A. et al. Nutrition, feeding and management of beef cattle in intensive and extensive production systems Animal agriculture (75–98). (Academic Press (2020).
Mondière, A. et al. Trade-offs between higher productivity and lower environmental impacts for biodiversity-friendly and conventional cattle-oriented systems. Agric. Syst. 213, 103798 (2024).
doi: 10.1016/j.agsy.2023.103798
Aquilani, C., Confessore, A., Bozzi, R., Sirtori, F. & Pugliese, C. Precision livestock farming technologies in pasture-based livestock systems. Animal 16(1), 100429 (2022).
pubmed: 34953277 doi: 10.1016/j.animal.2021.100429
Hermansen, Z. E. & Zervas, G. Round Table discussion of the organic animal production session. Livest. Sci. 90, 63–65 (2004).
doi: 10.1016/S0301-6226(04)00120-4
Sundrum, A. Organic livestock farming: a critical review. Livest. Prod. Sci. 67(3), 207–215 (2001).
doi: 10.1016/S0301-6226(00)00188-3
Blanco-Penedo, I. et al. Evaluation of food safety and quality in organic beef cattle in NW Spain; a comparison with intensive and conventional systems. Agron. Res 7(2), 585–591 (2009).
Bittante, G. et al. Veal and beef meat quality of crossbred calves from dairy herds using sexed semen and semen from double-muscled sires. Ital. J. Anim. Sci. 22(1), 169–180. https://doi.org/10.1080/1828051X.2023.2171919 (2023).
doi: 10.1080/1828051X.2023.2171919
Domingo, G. et al. Effect of crossbreeding with Limousine, Rubia Gallega and Belgium Blue on meat quality and fatty acid profile of Holstein calves. Anim. Sci. J. 86(11), 913–921 (2015).
pubmed: 25706373 doi: 10.1111/asj.12373
Gagaoua, M., Monteils, V., Couvreur, S. & Picard, B. Identification of biomarkers associated with the rearing practices, carcass characteristics, and beef quality: An integrative approach. J. Agric. Food Chem. 65(37), 8264–8278 (2017).
pubmed: 28844145 doi: 10.1021/acs.jafc.7b03239
Franco, D., Carballo, J., Bermñudez, R. & Lorenzo, J. M. Effect of genotype and slaughter age on carcass traits and meat quality of the Celta pig breed in extensive system. Anna. Anim. Sci. 16(1), 259–273 (2016).
doi: 10.1515/aoas-2015-0056
Liu, W. et al. Effects of dietary Allium mongolicum Regel powder supplementation on the growth performance, meat quality, antioxidant capacity and muscle fibre characteristics of fattening Angus calves under heat stress conditions. Food Chem. 453, 139539 (2024).
pubmed: 38788638 doi: 10.1016/j.foodchem.2024.139539
Qin, X. et al. Effects of dietary sea buckthorn pomace supplementation on skeletal muscle mass and meat quality in lambs. Meat sci. 166, 108141 (2020).
pubmed: 32302933 doi: 10.1016/j.meatsci.2020.108141
Whyte, H. et al. "The potential of the mineral composition to discriminate between beef from different cattle diets and between individual muscles. Food Control 163, 110539 (2024).
doi: 10.1016/j.foodcont.2024.110539
Gagaoua, M., Monteils, V. & Picard, B. Decision tree, a learning tool for the prediction of beef tenderness using rearing factors and carcass characteristics. J. Sci. Food Agric. 99(3), 1275–1283 (2019).
pubmed: 30073653 doi: 10.1002/jsfa.9301
Maggiolino, A. et al. Carcass and meat quality characteristics from Iberian wild red deer (Cervus elaphus) hunted at different ages. J. Sci. Food Agric. 99(4), 1938–1945 (2019).
pubmed: 30270485 doi: 10.1002/jsfa.9391
Acevedo-Giraldo, J. D., Sánchez, J. A. & Romero, M. H. Effects of feed withdrawal times prior to slaughter on some animal welfare indicators and meat quality traits in commercial pigs. Meat sci. 167, 107993 (2020).
pubmed: 32388087 doi: 10.1016/j.meatsci.2019.107993
Bogdanowicz, J., Cierach, M. & Żmijewski, T. Effects of aging treatment and freezing/thawing methods on the quality attributes of beef from Limousin× Holstein-Friesian and Hereford× Holstein-Friesian crossbreeds. Meat sci. 137, 71–76 (2018).
pubmed: 29154221 doi: 10.1016/j.meatsci.2017.10.015
Contini, C. et al. Effect of an active packaging with citrus extract on lipid oxidation and sensory quality of cooked turkey meat. Meat Sci. 96(3), 1171–1176 (2014).
pubmed: 24334037 doi: 10.1016/j.meatsci.2013.11.007
Palmieri, B. & Sblendorio, V. Oxidative stress tests: overview on reliability and use. Eur. Rev. Med. Pharmacol. Sci. 11(6), 383–399 (2007).
pubmed: 18306907
Kreutzmann, M. et al. Differential modulation of markers of oxidative stress and DNA damage in arterial hypertension. Antioxidants https://doi.org/10.3390/antiox12111965 (2023).
doi: 10.3390/antiox12111965 pubmed: 38001818 pmcid: 10669810
McCord, J. M. The evolution of free radicals and oxidative stress. Am. J. Med. 108(8), 652–659 (2000).
pubmed: 10856414 doi: 10.1016/S0002-9343(00)00412-5
Rock, C. L., Jacob, R. A. & Bowen, P. E. Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J. Am. Diet. Assoc. 96(7), 693–702 (1996).
pubmed: 8675913 doi: 10.1016/S0002-8223(96)00190-3
Cataldi, A. Cell responses to oxidative stressors. Curr. Pharm. Design 16(12), 1387–1395 (2010).
doi: 10.2174/138161210791033969
Fayemi, P. O. & Muchenje, V. Meat in African context: From history to science. Afr. J. Biotechnol. 11(6), 1298–1306 (2012).
doi: 10.5897/AJB11.2728
Minka, N. S. & Ayo, J. O. Physiological responses of food animals to road transportation stress. Afr. J. Biotechnol. 8, 25 (2009).
Sullivan, P. A. et al. Preslaughter factors affecting mobility, blood parameters, bruising, and muscle pH of finished beef cattle in the United States. Trans. Anim. Sci. https://doi.org/10.1093/tas/txae035 (2024).
doi: 10.1093/tas/txae035
Warriss, P. D. Meat science. CABI publishing (2010).
Chulayo, A. Y., Tada, O. & Muchenje, V. Research on pre-slaughter stress and meat quality: A review of challenges faced under practical conditions. Appl. Anim. Husb. Rural Dev. 5, 1–6 (2012).
Mathew, O. A., Foluke, A., Olufemi, M. A., Opeyemi, A. & Micheal, A. Comparative effect of vitamin complex and orange extract on physiological and blood parameters of transported pullets in humid tropics. Online J. Anim. Feed Res. 13(2), 97–104. https://doi.org/10.51227/ojafr.2023.15 (2023).
doi: 10.51227/ojafr.2023.15
Fayemi, P. O. & Muchenje, V. Maternal slaughter at abattoirs: history, causes, cases and the meat industry. SpringerPlus 2(1), 1–7 (2013).
doi: 10.1186/2193-1801-2-125
Chulayo, A. Y. & Muchenje, V. Effect of pre-slaughter conditions on physico-chemical characteristics of mutton from three sheep breeds slaughtered at a smallholder rural abattoir. South Afr. J. Anim. Sci. 43(5), 64–68 (2013).
doi: 10.4314/sajas.v43i5.12
Muchenje, V., Dzama, K., Chimonyo, M., Strydom, P. E. & Raats, J. G. Relationship between pre-slaughter stress responsiveness and beef quality in three cattle breeds. Meat Sci. 81(4), 653–657 (2009).
pubmed: 20416575 doi: 10.1016/j.meatsci.2008.11.004
Ferguson, D. M. & Warner, R. D. Have we underestimated the impact of pre-slaughter stress on meat quality in ruminants?. Meat Sci. 80(1), 12–19 (2008).
pubmed: 22063165 doi: 10.1016/j.meatsci.2008.05.004
Piccione, G. et al. Oxidative stress associated with road transportation in ewes. Small Rumin. Res. 112(1–3), 235–238 (2013).
doi: 10.1016/j.smallrumres.2012.11.001
Costantini, D. & Bonadonna, F. Patterns of variation of serum oxidative stress markers in two seabird species. Polar Res. 29(1), 30–35 (2010).
doi: 10.1111/j.1751-8369.2009.00143.x
Mapiye, C. et al. The labile lipid fraction of meat: From perceived disease and waste to health and opportunity. Meat sci. 92(3), 210–220 (2012).
pubmed: 22546816 doi: 10.1016/j.meatsci.2012.03.016
Sazili, A. Q. et al. Quality assessment of longissimus and semitendinosus muscles from beef cattle subjected to non-penetrative and penetrative percussive stunning methods. Asian-Australas. J. Animal Sci. 26(5), 723–731 (2013).
doi: 10.5713/ajas.2012.12563
Doganlar, O. & Doganlar, B. Z. Responses of antioxidant enzymes and heat shock proteins in Drosophila to treatment with a pesticide mixture. Arch. Biol. Sci. 67(3), 869–876 (2015).
doi: 10.2298/ABS141031046D
Doganlar, O., Doganlar, Z. B., Muranlı, F. D. G. & Guner, U. Genotoxic effect and carcinogenic potential of a mixture of as and cd in zebrafish at permissible maximum contamination levels for drinking water. Water Air Soil Pollut. 227(3), 1–16 (2016).
doi: 10.1007/s11270-016-2779-1
Munekata, P. E., Pateiro, M., López-Pedrouso, M., Gagaoua, M. & Lorenzo, J. M. Foodomics in meat quality. Current Opin. Food Sci. 38, 79–85 (2021).
doi: 10.1016/j.cofs.2020.10.003
Lamri, M. et al. Towards the discovery of goat meat quality biomarkers using label-free proteomics. J. Proteom. 278, 104868 (2023).
doi: 10.1016/j.jprot.2023.104868
Güçlü, H. et al. Effects of cisplatin-5-fluorouracil combination therapy on oxidative stress, DNA damage, mitochondrial apoptosis, and death receptor signalling in retinal pigment epithelium cells. Cutan. Ocular Toxicol. 37(3), 291–304 (2018).
doi: 10.1080/15569527.2018.1456548
Doğanlar, Z. B. et al. The role of melatonin in oxidative stress, DNA damage, apoptosis and angiogenesis in fetal eye under preeclampsia and melatonin deficiency stress. Curr. Eye Res. 44(10), 1157–1169 (2019).
pubmed: 31090463
Lykkesfeldt, J. & Svendsen, O. Oxidants and antioxidants in disease: oxidative stress in farm animals. Vet. J. 173(3), 502–511 (2007).
pubmed: 16914330 doi: 10.1016/j.tvjl.2006.06.005
Wiseman, H. & Halliwell, B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem. J. 313(1), 17–29 (1996).
pubmed: 8546679 pmcid: 1216878 doi: 10.1042/bj3130017
Huang, F. et al. Changes in apoptotic factors and caspase activation pathways during the postmortem aging of beef muscle. Food Chem. 190, 110–114 (2016).
pubmed: 26212948 doi: 10.1016/j.foodchem.2015.05.056
Kurashova, N. A., Madaeva, I. M. & Kolesnikova, L. I. Expression of HSP70 heat-shock proteins under oxidative stress. Adv. Gerontol. 10, 20–25 (2020).
doi: 10.1134/S2079057020010099
Vardar, S. A. et al. Different responses of apoptotic, inflammatory and heat shock protein gene expression to a single bout of high-intensity interval exercise between physically active and inactive men. Appl. Physiol. Nutr. Metab. 46(7), 743–752 (2021).
pubmed: 33439763 doi: 10.1139/apnm-2020-0783
Zhang, H. M. et al. Longissimus dorsi muscle transcriptomic analysis of Yunling and Chinese simmental cattle differing in intramuscular fat content and fatty acid composition. Genome 61(8), 549–558 (2018).
pubmed: 29883552 doi: 10.1139/gen-2017-0164
Archile-Contreras, A. C. & Purslow, P. P. Oxidative stress may affect meat quality by interfering with collagen turnover by muscle fibroblasts. Food Res. Int. 44(2), 582–588 (2011).
doi: 10.1016/j.foodres.2010.12.002
Falowo, A. B., Fayemi, P. O. & Muchenje, V. Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Res. Int. 64, 171–181 (2014).
pubmed: 30011637 doi: 10.1016/j.foodres.2014.06.022
Liu, Y. et al. Transcriptomics analysis on excellent meat quality traits of skeletal muscles of the Chinese indigenous min pig compared with the large white breed. Int. J. Mol. Sci. 19(1), 21 (2018).
doi: 10.3390/ijms19010021
Chen, G., Su, Y., Cai, Y., He, L. & Yang, G. Comparative transcriptomic analysis reveals beneficial effect of dietary mulberry leaves on the muscle quality of finishing pigs. Vet. Med. Sci. 5(4), 526–535 (2019).
pubmed: 31486291 pmcid: 6868455 doi: 10.1002/vms3.187
Wang, L., Shi, H., Huang, J.-L., Xu, S. & Liu, P. P. Linggui Zhugan decoction inhibits ventricular remodeling after acute myocardial infarction in mice by suppressing TGF-β1/Smad signaling pathway. Chin. J. Integr. Med. 26(5), 345–352 (2020).
pubmed: 30623345 doi: 10.1007/s11655-018-3024-0
SPSS SPSS for Windows, Version 25.0, SPSS Inc. Chicago (2024).
Field, A. Discovering Statistics Using IBM SPSS Statistics, 5th ed.; SAGE Publications Ltd.: London, UK; Philadelphia, PA, USA, (2009).

Auteurs

Ali Murat Tatar (AM)

Faculty of Agriculture, Department of Animal Science, Dicle University, 21280, Diyarbakır, Turkey. tatar@dicle.edu.tr.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH