Deciphering the role of VapBC13 and VapBC26 toxin antitoxin systems in the pathophysiology of Mycobacterium tuberculosis.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 28 08 2023
accepted: 01 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The expansion of VapBC TA systems in M. tuberculosis has been linked with its fitness and survival upon exposure to stress conditions. Here, we have functionally characterized VapBC13 and VapBC26 TA modules of M. tuberculosis. We report that overexpression of VapC13 and VapC26 toxins in M. tuberculosis results in growth inhibition and transcriptional reprogramming. We have also identified various regulatory proteins as hub nodes in the top response network of VapC13 and VapC26 overexpression strains. Further, analysis of RNA protection ratios revealed potential tRNA targets for VapC13 and VapC26. Using in vitro ribonuclease assays, we demonstrate that VapC13 and VapC26 degrade serT and leuW tRNA, respectively. However, no significant changes in rRNA cleavage profiles were observed upon overexpression of VapC13 and VapC26 in M. tuberculosis. In order to delineate the role of these TA systems in M. tuberculosis physiology, various mutant strains were constructed. We show that in comparison to the parental strain, ΔvapBC13 and ΔvapBC26 strains were mildly susceptible to oxidative stress. Surprisingly, the growth patterns of parental and mutant strains were comparable in aerosol-infected guinea pigs. These observations imply that significant functional redundancy exists for some TA systems from M. tuberculosis.

Identifiants

pubmed: 39478197
doi: 10.1038/s42003-024-06998-6
pii: 10.1038/s42003-024-06998-6
doi:

Substances chimiques

Bacterial Proteins 0
Bacterial Toxins 0
RNA, Transfer 9014-25-9

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1417

Subventions

Organisme : DBT India Alliance (Wellcome Trust/DBT India Alliance)
ID : IA/S/19/2/504646

Informations de copyright

© 2024. The Author(s).

Références

Hayes, F. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 1496–1499 (2003).
pubmed: 12970556 doi: 10.1126/science.1088157
Ogura, T. & Hiraga, S. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl Acad. Sci. USA 80, 4784–4788 (1983).
pubmed: 6308648 pmcid: 384129 doi: 10.1073/pnas.80.15.4784
Unterholzner, S. J., Poppenberger, B. & Rozhon, W. Toxin-antitoxin systems: Biology, identification, and application. Mob. Genet Elem. 3, e26219 (2013).
doi: 10.4161/mge.26219
Harms, A., Brodersen, D. E., Mitarai, N. & Gerdes, K. Toxins, Targets, and Triggers: An Overview of Toxin-Antitoxin Biology. Mol. Cell 70, 768–784 (2018).
pubmed: 29398446 doi: 10.1016/j.molcel.2018.01.003
Hayes, F. & Van Melderen, L. Toxins-antitoxins: diversity, evolution and function. Crit. Rev. Biochem Mol. Biol. 46, 386–408 (2011).
pubmed: 21819231 doi: 10.3109/10409238.2011.600437
Fraikin N., Goormaghtigh F., Van Melderen L. Type II Toxin-Antitoxin Systems: Evolution and Revolutions. J Bacteriol 202, (2020).
Jurenas, D., Fraikin, N., Goormaghtigh, F. & Van Melderen, L. Biology and evolution of bacterial toxin-antitoxin systems. Nat. Rev. Microbiol 20, 335–350 (2022).
pubmed: 34975154 doi: 10.1038/s41579-021-00661-1
Qiu, J., Zhai, Y., Wei, M., Zheng, C. & Jiao, X. Toxin-antitoxin systems: Classification, biological roles, and applications. Microbiol Res 264, 127159 (2022).
pubmed: 35969944 doi: 10.1016/j.micres.2022.127159
Page, R. & Peti, W. Toxin-antitoxin systems in bacterial growth arrest and persistence. Nat. Chem. Biol. 12, 208–214 (2016).
pubmed: 26991085 doi: 10.1038/nchembio.2044
Akarsu, H. et al. TASmania: A bacterial Toxin-Antitoxin Systems database. PLoS Comput Biol. 15, e1006946 (2019).
pubmed: 31022176 pmcid: 6504116 doi: 10.1371/journal.pcbi.1006946
Tandon, H. et al. Bioinformatic and mutational studies of related toxin-antitoxin pairs in Mycobacterium tuberculosis predict and identify key functional residues. J. Biol. Chem. 294, 9048–9063 (2019).
pubmed: 31018964 pmcid: 6556569 doi: 10.1074/jbc.RA118.006814
Diaz-Orejas, R., Espinosa, M. & Yeo, C. C. The Importance of the Expendable: Toxin-Antitoxin Genes in Plasmids and Chromosomes. Front Microbiol 8, 1479 (2017).
pubmed: 28824602 pmcid: 5543033 doi: 10.3389/fmicb.2017.01479
LeRoux, M. & Laub, M. T. Toxin-Antitoxin Systems as Phage Defense Elements. Annu Rev. Microbiol 76, 21–43 (2022).
pubmed: 35395167 doi: 10.1146/annurev-micro-020722-013730
Song, S. & Wood, T. K. A Primary Physiological Role of Toxin/Antitoxin Systems Is Phage Inhibition. Front Microbiol 11, 1895 (2020).
pubmed: 32903830 pmcid: 7438911 doi: 10.3389/fmicb.2020.01895
Ronneau, S. & Helaine, S. Clarifying the Link between Toxin-Antitoxin Modules and Bacterial Persistence. J. Mol. Biol. 431, 3462–3471 (2019).
pubmed: 30914294 doi: 10.1016/j.jmb.2019.03.019
Wang, X. & Wood, T. K. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ. Microbiol 77, 5577–5583 (2011).
pubmed: 21685157 pmcid: 3165247 doi: 10.1128/AEM.05068-11
Agarwal, S. et al. VapBC22 toxin-antitoxin system from Mycobacterium tuberculosis is required for pathogenesis and modulation of host immune response. Sci. Adv. 6, eaba6944 (2020).
pubmed: 32537511 pmcid: 7269643 doi: 10.1126/sciadv.aba6944
Barth, V. C. et al. Mycobacterium tuberculosis VapC4 toxin engages small ORFs to initiate an integrated oxidative and copper stress response. Proc. Natl Acad. Sci. USA 118, e2022136118 (2021).
pubmed: 34362841 pmcid: 8364209 doi: 10.1073/pnas.2022136118
Cai, T. et al. HigBA toxin-antitoxin system of Weissella cibaria is involved in response to the bile salt stress. J. Sci. Food Agric 102, 6749–6756 (2022).
pubmed: 35633128 doi: 10.1002/jsfa.12042
Moreno-Del Alamo, M., Tabone, M., Lioy, V. S. & Alonso, J. C. Toxin zeta Triggers a Survival Response to Cope with Stress and Persistence. Front Microbiol 8, 1130 (2017).
pubmed: 28690594 pmcid: 5481361 doi: 10.3389/fmicb.2017.01130
Han, Y. & Lee, E. J. Substrate specificity of bacterial endoribonuclease toxins. BMB Rep. 53, 611–621 (2020).
pubmed: 33148377 pmcid: 7781912 doi: 10.5483/BMBRep.2020.53.12.203
Winther, K., Tree, J. J., Tollervey, D. & Gerdes, K. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation. Nucleic Acids Res 44, 9860–9871 (2016).
pubmed: 27599842 pmcid: 5175351 doi: 10.1093/nar/gkw781
Kurata, T. et al. A hyperpromiscuous antitoxin protein domain for the neutralization of diverse toxin domains. Proc. Natl Acad. Sci. USA 119, e2102212119 (2022).
pubmed: 35121656 pmcid: 8832971 doi: 10.1073/pnas.2102212119
Mansour, M. et al. Substrate recognition and cryo-EM structure of the ribosome-bound TAC toxin of Mycobacterium tuberculosis. Nat. Commun. 13, 2641 (2022).
pubmed: 35552387 pmcid: 9098466 doi: 10.1038/s41467-022-30373-w
Deep, A. et al. Structural, functional and biological insights into the role of Mycobacterium tuberculosis VapBC11 toxin-antitoxin system: targeting a tRNase to tackle mycobacterial adaptation. Nucleic Acids Res 46, 11639–11655 (2018).
pubmed: 30329074 pmcid: 6265470 doi: 10.1093/nar/gky924
Schifano, J. M. et al. Mycobacterial toxin MazF-mt6 inhibits translation through cleavage of 23S rRNA at the ribosomal A site. Proc. Natl Acad. Sci. USA 110, 8501–8506 (2013).
pubmed: 23650345 pmcid: 3666664 doi: 10.1073/pnas.1222031110
Walling, L. R. & Butler, J. S. Toxins targeting transfer RNAs: Translation inhibition by bacterial toxin-antitoxin systems. Wiley Interdiscip. Rev. RNA 10, e1506 (2019).
pubmed: 30296016 doi: 10.1002/wrna.1506
Rocker, A. et al. The ng_zeta1 toxin of the gonococcal epsilon/zeta toxin/antitoxin system drains precursors for cell wall synthesis. Nat. Commun. 9, 1686 (2018).
pubmed: 29703974 pmcid: 5923241 doi: 10.1038/s41467-018-03652-8
Jurenas, D., Garcia-Pino, A. & Van Melderen, L. Novel toxins from type II toxin-antitoxin systems with acetyltransferase activity. Plasmid 93, 30–35 (2017).
pubmed: 28941941 doi: 10.1016/j.plasmid.2017.08.005
Goeders, N. & Van Melderen, L. Toxin-antitoxin systems as multilevel interaction systems. Toxins (Basel) 6, 304–324 (2014).
pubmed: 24434905 pmcid: 3920263 doi: 10.3390/toxins6010304
Singh, G., Yadav, M., Ghosh, C. & Rathore, J. S. Bacterial toxin-antitoxin modules: classification, functions, and association with persistence. Curr. Res Micro. Sci. 2, 100047 (2021).
Ramage, H. R., Connolly, L. E. & Cox, J. S. Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5, e1000767 (2009).
pubmed: 20011113 pmcid: 2781298 doi: 10.1371/journal.pgen.1000767
Sala, A., Bordes, P. & Genevaux, P. Multiple toxin-antitoxin systems in Mycobacterium tuberculosis. Toxins (Basel) 6, 1002–1020 (2014).
pubmed: 24662523 pmcid: 3968373 doi: 10.3390/toxins6031002
Freire, D. M. et al. An NAD(+) Phosphorylase Toxin Triggers Mycobacterium tuberculosis Cell Death. Mol. Cell 73, 1282–1291.e1288 (2019).
pubmed: 30792174 pmcid: 6436930 doi: 10.1016/j.molcel.2019.01.028
Tandon, H., Sharma, A., Sandhya, S., Srinivasan, N. & Singh, R. Mycobacterium tuberculosis Rv0366c-Rv0367c encodes a non-canonical PezAT-like toxin-antitoxin pair. Sci. Rep. 9, 1163 (2019).
pubmed: 30718534 pmcid: 6362051 doi: 10.1038/s41598-018-37473-y
Ahidjo, B. A. et al. VapC toxins from Mycobacterium tuberculosis are ribonucleases that differentially inhibit growth and are neutralized by cognate VapB antitoxins. PLoS One 6, e21738 (2011).
pubmed: 21738782 pmcid: 3126847 doi: 10.1371/journal.pone.0021738
Agarwal, S. et al. System-Wide Analysis Unravels the Differential Regulation and In Vivo Essentiality of Virulence-Associated Proteins B and C Toxin-Antitoxin Systems of Mycobacterium tuberculosis. J. Infect. Dis. 217, 1809–1820 (2018).
pubmed: 29529224 doi: 10.1093/infdis/jiy109
Tiwari, P. et al. MazF ribonucleases promote Mycobacterium tuberculosis drug tolerance and virulence in guinea pigs. Nat. Commun. 6, 6059 (2015).
pubmed: 25608501 doi: 10.1038/ncomms7059
Arcus, V. L., McKenzie, J. L., Robson, J. & Cook, G. M. The PIN-domain ribonucleases and the prokaryotic VapBC toxin-antitoxin array. Protein Eng. Des. Sel. 24, 33–40 (2011).
pubmed: 21036780 doi: 10.1093/protein/gzq081
Wall, D. & Kaiser, D. Type IV pili and cell motility. Mol. Microbiol 32, 1–10 (1999).
pubmed: 10216854 doi: 10.1046/j.1365-2958.1999.01339.x
Senissar, M., Manav, M. C. & Brodersen, D. E. Structural conservation of the PIN domain active site across all domains of life. Protein Sci. 26, 1474–1492 (2017).
pubmed: 28508407 pmcid: 5521613 doi: 10.1002/pro.3193
Santos-Sierra, S., Pardo-Abarrio, C., Giraldo, R. & Diaz-Orejas, R. Genetic identification of two functional regions in the antitoxin of the parD killer system of plasmid R1. FEMS Microbiol Lett. 206, 115–119 (2002).
pubmed: 11786266 doi: 10.1111/j.1574-6968.2002.tb10995.x
Winther, K. S., Brodersen, D. E., Brown, A. K. & Gerdes, K. VapC20 of Mycobacterium tuberculosis cleaves the sarcin-ricin loop of 23S rRNA. Nat. Commun. 4, 2796 (2013).
pubmed: 24225902 doi: 10.1038/ncomms3796
Cruz, J. W. et al. Growth-regulating Mycobacterium tuberculosis VapC-mt4 toxin is an isoacceptor-specific tRNase. Nat. Commun. 6, 7480 (2015).
pubmed: 26158745 doi: 10.1038/ncomms8480
Cruz, J. W. & Woychik, N. A. tRNAs taking charge. Pathog. Dis. 74, ftv117 (2016).
pubmed: 26657107 doi: 10.1093/femspd/ftv117
Chauhan, U., Barth, V. C. & Woychik, N. A. tRNA(fMet) Inactivating Mycobacterium tuberculosis VapBC Toxin-Antitoxin Systems as Therapeutic Targets. Antimicrob. Agents Chemother. 66, e0189621 (2022).
pubmed: 35404073 doi: 10.1128/aac.01896-21
Gupta, A., Venkataraman, B., Vasudevan, M. & Gopinath Bankar, K. Co-expression network analysis of toxin-antitoxin loci in Mycobacterium tuberculosis reveals key modulators of cellular stress. Sci. Rep. 7, 5868 (2017).
pubmed: 28724903 pmcid: 5517426 doi: 10.1038/s41598-017-06003-7
Zhang, L. Y. et al. Toxin-Antitoxin Systems Alter Adaptation of Mycobacterium smegmatis to Environmental Stress. Microbiol Spectr. 10, e0281522 (2022).
pubmed: 36318013 doi: 10.1128/spectrum.02815-22
Sharma, A. et al. HigB1 Toxin in Mycobacterium tuberculosis Is Upregulated During Stress and Required to Establish Infection in Guinea Pigs. Front Microbiol 12, 748890 (2021).
pubmed: 34917044 pmcid: 8669151 doi: 10.3389/fmicb.2021.748890
Gosain T. P., Singh M., Singh C., Thakur K. G., Singh R. Disruption of MenT2 toxin impairs the growth of Mycobacterium tuberculosis in guinea pigs. Microbiology (Reading) 168, (2022).
Gosain, T. P. et al. Mycobacterium tuberculosis strain with deletions in menT3 and menT4 is attenuated and confers protection in mice and guinea pigs. Nat. Commun. 15, 5467 (2024).
pubmed: 38937463 pmcid: 11211403 doi: 10.1038/s41467-024-49246-5
Zaveri, A. et al. Depletion of the DarG antitoxin in Mycobacterium tuberculosis triggers the DNA-damage response and leads to cell death. Mol. Microbiol 114, 641–652 (2020).
pubmed: 32634279 pmcid: 7689832 doi: 10.1111/mmi.14571
Sharma, A. et al. VapC21 Toxin Contributes to Drug-Tolerance and Interacts With Non-cognate VapB32 Antitoxin in Mycobacterium tuberculosis. Front Microbiol 11, 2037 (2020).
pubmed: 33042034 pmcid: 7517352 doi: 10.3389/fmicb.2020.02037
Singh, R., Barry, C. E. 3rd & Boshoff, H. I. The three RelE homologs of Mycobacterium tuberculosis have individual, drug-specific effects on bacterial antibiotic tolerance. J. Bacteriol. 192, 1279–1291 (2010).
pubmed: 20061486 pmcid: 2820853 doi: 10.1128/JB.01285-09
Han, J. S. et al. Characterization of a chromosomal toxin-antitoxin, Rv1102c-Rv1103c system in Mycobacterium tuberculosis. Biochem Biophys. Res Commun. 400, 293–298 (2010).
pubmed: 20705052 doi: 10.1016/j.bbrc.2010.08.023
Gupta, A. Killing activity and rescue function of genome-wide toxin-antitoxin loci of Mycobacterium tuberculosis. FEMS Microbiol Lett. 290, 45–53 (2009).
pubmed: 19016878 doi: 10.1111/j.1574-6968.2008.01400.x
Chattopadhyay, G. et al. Functional and Biochemical Characterization of the MazEF6 Toxin-Antitoxin System of Mycobacterium tuberculosis. J. Bacteriol. 204, e0005822 (2022).
pubmed: 35357163 doi: 10.1128/jb.00058-22
Betts, J. C., Lukey, P. T., Robb, L. C., McAdam, R. A. & Duncan, K. Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol. Microbiol 43, 717–731 (2002).
pubmed: 11929527 doi: 10.1046/j.1365-2958.2002.02779.x
Rustad, T. R., Harrell, M. I., Liao, R. & Sherman, D. R. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS One 3, e1502 (2008).
pubmed: 18231589 pmcid: 2198943 doi: 10.1371/journal.pone.0001502
Voskuil, M. I., Bartek, I. L., Visconti, K. & Schoolnik, G. K. The response of mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front Microbiol 2, 105 (2011).
pubmed: 21734908 pmcid: 3119406 doi: 10.3389/fmicb.2011.00105
Sherman, B. T. et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 50, W216–W221 (2022).
pubmed: 35325185 pmcid: 9252805 doi: 10.1093/nar/gkac194
Ward, S. K., Hoye, E. A. & Talaat, A. M. The global responses of Mycobacterium tuberculosis to physiological levels of copper. J. Bacteriol. 190, 2939–2946 (2008).
pubmed: 18263720 pmcid: 2293257 doi: 10.1128/JB.01847-07
Marcus, S. A., Sidiropoulos, S. W., Steinberg, H. & Talaat, A. M. CsoR Is Essential for Maintaining Copper Homeostasis in Mycobacterium tuberculosis. PLoS One 11, e0151816 (2016).
pubmed: 26999439 pmcid: 4801387 doi: 10.1371/journal.pone.0151816
Festa, R. A. et al. A novel copper-responsive regulon in Mycobacterium tuberculosis. Mol. Microbiol 79, 133–148 (2011).
pubmed: 21166899 doi: 10.1111/j.1365-2958.2010.07431.x
Belardinelli, J. M. et al. Biosynthesis and translocation of unsulfated acyltrehaloses in Mycobacterium tuberculosis. J. Biol. Chem. 289, 27952–27965 (2014).
pubmed: 25124040 pmcid: 4183827 doi: 10.1074/jbc.M114.581199
Kumar, P. et al. PapA1 and PapA2 are acyltransferases essential for the biosynthesis of the Mycobacterium tuberculosis virulence factor sulfolipid-1. Proc. Natl Acad. Sci. USA 104, 11221–11226 (2007).
pubmed: 17592143 pmcid: 2040880 doi: 10.1073/pnas.0611649104
Fenn, K., Wong, C. T. & Darbari, V. C. Mycobacterium tuberculosis Uses Mce Proteins to Interfere With Host Cell Signaling. Front Mol. Biosci. 6, 149 (2019).
pubmed: 31998747 doi: 10.3389/fmolb.2019.00149
Lee, W., VanderVen, B. C., Fahey, R. J. & Russell, D. G. Intracellular Mycobacterium tuberculosis exploits host-derived fatty acids to limit metabolic stress. J. Biol. Chem. 288, 6788–6800 (2013).
pubmed: 23306194 pmcid: 3591590 doi: 10.1074/jbc.M112.445056
Kalscheuer, R., Weinrick, B., Veeraraghavan, U., Besra, G. S. & Jacobs, W. R. Jr. Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc. Natl Acad. Sci. USA 107, 21761–21766 (2010).
pubmed: 21118978 pmcid: 3003129 doi: 10.1073/pnas.1014642108
Bartek, I. L. et al. Mycobacterium tuberculosis Lsr2 is a global transcriptional regulator required for adaptation to changing oxygen levels and virulence. mBio 5, e01106–e01114 (2014).
pubmed: 24895305 pmcid: 4049101 doi: 10.1128/mBio.01106-14
Cumming B. M., et al. The Physiology and Genetics of Oxidative Stress in Mycobacteria. Microbiol Spectr 2, (2014).
Kumar, P., Amara, R. R., Challu, V. K., Chadda, V. K. & Satchidanandam, V. The Apa protein of Mycobacterium tuberculosis stimulates gamma interferon-secreting CD4+ and CD8+ T cells from purified protein derivative-positive individuals and affords protection in a guinea pig model. Infect. Immun. 71, 1929–1937 (2003).
pubmed: 12654810 pmcid: 152084 doi: 10.1128/IAI.71.4.1929-1937.2003
Garces, A. et al. EspA acts as a critical mediator of ESX1-dependent virulence in Mycobacterium tuberculosis by affecting bacterial cell wall integrity. PLoS Pathog. 6, e1000957 (2010).
pubmed: 20585630 pmcid: 2891827 doi: 10.1371/journal.ppat.1000957
Puri, R. V., Reddy, P. V. & Tyagi, A. K. Secreted acid phosphatase (SapM) of Mycobacterium tuberculosis is indispensable for arresting phagosomal maturation and growth of the pathogen in guinea pig tissues. PLoS One 8, e70514 (2013).
pubmed: 23923000 pmcid: 3724783 doi: 10.1371/journal.pone.0070514
Pal, R., Bisht, M. K. & Mukhopadhyay, S. Secretory proteins of Mycobacterium tuberculosis and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J. 289, 4146–4171 (2022).
pubmed: 35073464 doi: 10.1111/febs.16369
Lou, Y., Rybniker, J., Sala, C. & Cole, S. T. EspC forms a filamentous structure in the cell envelope of Mycobacterium tuberculosis and impacts ESX-1 secretion. Mol. Microbiol 103, 26–38 (2017).
pubmed: 27859904 doi: 10.1111/mmi.13575
Sanchez-Barinas, C. D. et al. Mycobacterium tuberculosis H37Rv LpqG Protein Peptides Can Inhibit Mycobacterial Entry through Specific Interactions. Molecules 23, 526 (2018).
pubmed: 29495456 pmcid: 6017924 doi: 10.3390/molecules23030526
Qian, J., Chen, R., Wang, H. & Zhang, X. Role of the PE/PPE Family in Host-Pathogen Interactions and Prospects for Anti-Tuberculosis Vaccine and Diagnostic Tool Design. Front Cell Infect. Microbiol 10, 594288 (2020).
pubmed: 33324577 pmcid: 7726347 doi: 10.3389/fcimb.2020.594288
Kasari, V., Mets, T., Tenson, T. & Kaldalu, N. Transcriptional cross-activation between toxin-antitoxin systems of Escherichia coli. BMC Microbiol 13, 45 (2013).
pubmed: 23432955 pmcid: 3598666 doi: 10.1186/1471-2180-13-45
Mishra, S. et al. Efficacy of beta-lactam/beta-lactamase inhibitor combination is linked to WhiB4-mediated changes in redox physiology of Mycobacterium tuberculosis. Elife 6, e25624 (2017).
pubmed: 28548640 pmcid: 5473688 doi: 10.7554/eLife.25624
Gao, C. H., Yang, M. & He, Z. G. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One 7, e36255 (2012).
pubmed: 22558408 pmcid: 3338718 doi: 10.1371/journal.pone.0036255
Gong, Z., Li, H., Cai, Y., Stojkoska, A. & Xie, J. Biology of MarR family transcription factors and implications for targets of antibiotics against tuberculosis. J. Cell Physiol. 234, 19237–19248 (2019).
pubmed: 31012115 doi: 10.1002/jcp.28720
Mistry, J. et al. Pfam: The protein families database in 2021. Nucleic Acids Res 49, D412–D419 (2021).
pubmed: 33125078 doi: 10.1093/nar/gkaa913
Kim, Y., Wang, X., Ma, Q., Zhang, X. S. & Wood, T. K. Toxin-antitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J. Bacteriol. 191, 1258–1267 (2009).
pubmed: 19060153 doi: 10.1128/JB.01465-08
Chan, W. T., Espinosa, M. & Yeo, C. C. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems. Front Mol. Biosci. 3, 9 (2016).
pubmed: 27047942 pmcid: 4803016 doi: 10.3389/fmolb.2016.00009
De Bruyn, P., Girardin, Y. & Loris, R. Prokaryote toxin-antitoxin modules: Complex regulation of an unclear function. Protein Sci. 30, 1103–1113 (2021).
pubmed: 33786944 pmcid: 8138530 doi: 10.1002/pro.4071
Overgaard, M., Borch, J., Jorgensen, M. G. & Gerdes, K. Messenger RNA interferase RelE controls relBE transcription by conditional cooperativity. Mol. Microbiol 69, 841–857 (2008).
pubmed: 18532983 doi: 10.1111/j.1365-2958.2008.06313.x
Cataudella, I., Trusina, A., Sneppen, K., Gerdes, K. & Mitarai, N. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery. Nucleic Acids Res 40, 6424–6434 (2012).
pubmed: 22495927 pmcid: 3413109 doi: 10.1093/nar/gks297
Meena, L. S. & Rajni Survival mechanisms of pathogenic Mycobacterium tuberculosis H37Rv. FEBS J. 277, 2416–2427 (2010).
pubmed: 20553485 doi: 10.1111/j.1742-4658.2010.07666.x
Chai, Q., Zhang, Y. & Liu, C. H. Mycobacterium tuberculosis: An Adaptable Pathogen Associated With Multiple Human Diseases. Front Cell Infect. Microbiol 8, 158 (2018).
pubmed: 29868514 pmcid: 5962710 doi: 10.3389/fcimb.2018.00158
Stallings, C. L. & Glickman, M. S. Is Mycobacterium tuberculosis stressed out? A critical assessment of the genetic evidence. Microbes Infect. 12, 1091–1101 (2010).
pubmed: 20691805 pmcid: 3587153 doi: 10.1016/j.micinf.2010.07.014
Wen, Y., Behiels, E. & Devreese, B. Toxin-Antitoxin systems: their role in persistence, biofilm formation, and pathogenicity. Pathog. Dis. 70, 240–249 (2014).
pubmed: 24478112 doi: 10.1111/2049-632X.12145
Dorr, T., Vulic, M. & Lewis, K. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317 (2010).
pubmed: 20186264 pmcid: 2826370 doi: 10.1371/journal.pbio.1000317
Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).
pubmed: 15576765 pmcid: 532439 doi: 10.1128/JB.186.24.8172-8180.2004
Goormaghtigh F. et al. Reassessing the Role of Type II Toxin-Antitoxin Systems in Formation of Escherichia coli Type II Persister Cells. mBio 9, (2018).
Miallau, L. et al. Comparative proteomics identifies the cell-associated lethality of M. tuberculosis RelBE-like toxin-antitoxin complexes. Structure 21, 627–637 (2013).
pubmed: 23523424 pmcid: 3791866 doi: 10.1016/j.str.2013.02.008
Kamruzzaman M., Wu A. Y., Iredell J. R. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 9, (2021).
Sharp, J. D. et al. Growth and translation inhibition through sequence-specific RNA binding by Mycobacterium tuberculosis VapC toxin. J. Biol. Chem. 287, 12835–12847 (2012).
pubmed: 22354968 pmcid: 3339977 doi: 10.1074/jbc.M112.340109
Bukowski, M., Rojowska, A. & Wladyka, B. Prokaryotic toxin-antitoxin systems-the role in bacterial physiology and application in molecular biology. Acta Biochim Pol. 58, 1–9 (2011).
pubmed: 21394325 doi: 10.18388/abp.2011_2278
Norton, J. P. & Mulvey, M. A. Toxin-antitoxin systems are important for niche-specific colonization and stress resistance of uropathogenic Escherichia coli. PLoS Pathog. 8, e1002954 (2012).
pubmed: 23055930 pmcid: 3464220 doi: 10.1371/journal.ppat.1002954
Schifano, J. M. et al. An RNA-seq method for defining endoribonuclease cleavage specificity identifies dual rRNA substrates for toxin MazF-mt3. Nat. Commun. 5, 3538 (2014).
pubmed: 24709835 doi: 10.1038/ncomms4538
Lee, S. R. & Collins, K. Starvation-induced cleavage of the tRNA anticodon loop in Tetrahymena thermophila. J. Biol. Chem. 280, 42744–42749 (2005).
pubmed: 16272149 doi: 10.1074/jbc.M510356200
Cintron, M. et al. Accurate target identification for Mycobacterium tuberculosis endoribonuclease toxins requires expression in their native host. Sci. Rep. 9, 5949 (2019).
pubmed: 30976025 pmcid: 6459853 doi: 10.1038/s41598-019-41548-9
Wang, Q. et al. PE/PPE proteins mediate nutrient transport across the outer membrane of Mycobacterium tuberculosis. Science 367, 1147–1151 (2020).
pubmed: 32139546 pmcid: 11036889 doi: 10.1126/science.aav5912
Mitra A., Speer A., Lin K., Ehrt S., Niederweis M. PPE Surface Proteins Are Required for Heme Utilization by Mycobacterium tuberculosis. mBio 8, (2017).
Li, F. et al. Computational analysis and prediction of PE_PGRS proteins using machine learning. Comput Struct. Biotechnol. J. 20, 662–674 (2022).
pubmed: 35140886 pmcid: 8804200 doi: 10.1016/j.csbj.2022.01.019
Barth, V. C. et al. Toxin-mediated ribosome stalling reprograms the Mycobacterium tuberculosis proteome. Nat. Commun. 10, 3035 (2019).
pubmed: 31292443 pmcid: 6620280 doi: 10.1038/s41467-019-10869-8
Park, J. H., Shim, D., Kim, K. E. S., Lee, W. & Shin, S. J. Understanding Metabolic Regulation Between Host and Pathogens: New Opportunities for the Development of Improved Therapeutic Strategies Against Mycobacterium tuberculosis Infection. Front Cell Infect. Microbiol 11, 635335 (2021).
pubmed: 33796480 pmcid: 8007978 doi: 10.3389/fcimb.2021.635335
Cabral D. J., Wurster J. I., Belenky P. Antibiotic Persistence as a Metabolic Adaptation: Stress, Metabolism, the Host, and New Directions. Pharmaceuticals (Basel) 11, (2018).
Martinez, J. L. & Rojo, F. Metabolic regulation of antibiotic resistance. FEMS Microbiol Rev. 35, 768–789 (2011).
pubmed: 21645016 doi: 10.1111/j.1574-6976.2011.00282.x
Riffaud, C., Pinel-Marie, M. L. & Felden, B. Cross-Regulations between Bacterial Toxin-Antitoxin Systems: Evidence of an Interconnected Regulatory Network? Trends Microbiol 28, 851–866 (2020).
pubmed: 32540313 doi: 10.1016/j.tim.2020.05.016
Vilcheze, C., Weinrick, B., Leung, L. W. & Jacobs, W. R. Jr. Plasticity of Mycobacterium tuberculosis NADH dehydrogenases and their role in virulence. Proc. Natl Acad. Sci. USA 115, 1599–1604 (2018).
pubmed: 29382761 pmcid: 5816213 doi: 10.1073/pnas.1721545115
Bhargavi G., et al. Role of a Putative Alkylhydroperoxidase Rv2159c in the Oxidative Stress Response and Virulence of Mycobacterium tuberculosis. Pathogens 11, (2022).
McGillivray, A., Golden, N. A., Gautam, U. S., Mehra, S. & Kaushal, D. The Mycobacterium tuberculosis Rv2745c plays an important role in responding to redox stress. PLoS One 9, e93604 (2014).
pubmed: 24705585 pmcid: 3976341 doi: 10.1371/journal.pone.0093604
Ng, V. H., Cox, J. S., Sousa, A. O., MacMicking, J. D. & McKinney, J. D. Role of KatG catalase-peroxidase in mycobacterial pathogenesis: countering the phagocyte oxidative burst. Mol. Microbiol 52, 1291–1302 (2004).
pubmed: 15165233 doi: 10.1111/j.1365-2958.2004.04078.x
Ehrt, S. et al. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res 33, e21 (2005).
pubmed: 15687379 pmcid: 548372 doi: 10.1093/nar/gni013
Bardarov, S. et al. Specialized transduction: an efficient method for generating marked and unmarked targeted gene disruptions in Mycobacterium tuberculosis, M. bovis BCG and M. smegmatis. Microbiol. (Read.) 148, 3007–3017 (2002).
doi: 10.1099/00221287-148-10-3007
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 doi: 10.1093/bioinformatics/btp352
Arun, Sharma, et al. Transcriptome analysis of VapC13 and VapC26 overexpression in Mycobacterium tuberculosis. In: NCBI https://www.ncbi.nlm.nih.gov/bioproject/PRJNA996620 (2024).
Priyanka, A., Solanki, V., Parkesh, R. & Thakur, K. G. Crystal structure of the N-terminal domain of human SIRT7 reveals a three-helical domain architecture. Proteins 84, 1558–1563 (2016).
pubmed: 27287224 doi: 10.1002/prot.25085

Auteurs

Arun Sharma (A)

Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.

Neelam Singh (N)

Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.

Munmun Bhasin (M)

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.

Prabhakar Tiwari (P)

Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.

Pankaj Chopra (P)

Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India.

Raghavan Varadarajan (R)

Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India.

Ramandeep Singh (R)

Centre for Tuberculosis Research, Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, Faridabad-Gurugram expressway, Faridabad, Haryana, India. ramandeep@thsti.res.in.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH