Softening of the optical phonon by reduced interatomic bonding strength without depolarization.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
Oct 2024
Oct 2024
Historique:
received:
31
01
2023
accepted:
23
09
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
ppublish
Résumé
Softening of the transverse optical (TO) phonon, which could trigger ferroelectric phase transition, can usually be achieved by enhancing the long-range Coulomb interaction over the short-range bonding force
Identifiants
pubmed: 39478211
doi: 10.1038/s41586-024-08099-0
pii: 10.1038/s41586-024-08099-0
doi:
Substances chimiques
Titanium
D1JT611TNE
Oxides
0
Zirconium
C6V6S92N3C
perovskite
12194-71-7
Calcium Compounds
0
Hafnium
X71938L1DO
Oxygen
S88TT14065
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1080-1085Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer Nature Limited.
Références
Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).
doi: 10.1038/358136a0
Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994).
pubmed: 10056245
doi: 10.1103/PhysRevLett.72.3618
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).
pubmed: 12673246
doi: 10.1038/nature01501
Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).
pubmed: 17036000
doi: 10.1038/nature05148
Yim, K. et al. Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater. 7, e190–e190 (2015).
doi: 10.1038/am.2015.57
Cheema, S. S. et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022).
pubmed: 35536900
doi: 10.1126/science.abm8642
Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).
pubmed: 32322080
doi: 10.1038/s41586-020-2208-x
Bousquet, E., Spaldin, N. A. & Ghosez, P. Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett. 104, 037601 (2010).
pubmed: 20366683
doi: 10.1103/PhysRevLett.104.037601
Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063–1069 (2015).
doi: 10.1038/nphys3492
Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).
pubmed: 18622406
doi: 10.1038/nmat2226
Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).
doi: 10.1051/epjap:2004206
Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).
pubmed: 21642983
doi: 10.1038/nmat3035
Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).
pubmed: 24770354
doi: 10.1038/ncomms4525
Ghosez, P., Michenaud, J.-P. & Gonze, X. Dynamical atomic charges: the case of ABO
doi: 10.1103/PhysRevB.58.6224
Cochran, W. Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3, 412–414 (1959).
doi: 10.1103/PhysRevLett.3.412
Axe, J. D. Apparent ionic charges and vibrational eigenmodes of BaTiO
doi: 10.1103/PhysRev.157.429
Sirenko, A. A. et al. Soft-mode hardening in SrTiO
pubmed: 10746720
doi: 10.1038/35006023
Kang, S. et al. Highly enhanced ferroelectricity in HfO
pubmed: 35549417
doi: 10.1126/science.abk3195
Kalinin, S. V., Kim, Y., Fong, D. D. & Morozovska, A. N. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Prog. Phys. 81, 036502 (2018).
pubmed: 29368693
doi: 10.1088/1361-6633/aa915a
Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).
pubmed: 26383947
doi: 10.1126/science.aaa6442
Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).
pubmed: 14739450
doi: 10.1126/science.1092508
Noheda, B. & Íñiguez, J. A key piece of the ferroelectric hafnia puzzle. Science 369, 1300–1301 (2020).
pubmed: 32913088
doi: 10.1126/science.abd1212
Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).
pubmed: 19372426
doi: 10.1126/science.1169678
Cheema, S. S. et al. Ultrathin ferroic HfO
pubmed: 35388197
doi: 10.1038/s41586-022-04425-6
Harrison, W. A. Elementary Electronic Structure (World Scientific, 1999).
Rabe, K. M., Ahn, C. H. & Triscone, J. Physics of Ferroelectrics: A Modern Perspective (Springer, 2007).
Pauling, L. The size of ions and the structure of ionic crystals. J. Am. Chem. Soc. 49, 765–790 (1927).
doi: 10.1021/ja01402a019
Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B Struct. Sci. 25, 925–946 (1969).
doi: 10.1107/S0567740869003220
Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO
pubmed: 15306803
doi: 10.1038/nature02773
Hatt, A. J., Spaldin, N. A. & Ederer, C. Strain-induced isosymmetric phase transition in BiFeO
doi: 10.1103/PhysRevB.81.054109
Iwazaki, Y., Suzuki, T., Mizuno, Y. & Tsuneyuki, S. Doping-induced phase transitions in ferroelectric BaTiO
doi: 10.1103/PhysRevB.86.214103
Moriwake, H. et al. The electric field induced ferroelectric phase transition of AgNbO
doi: 10.1063/1.4941319
Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO
pubmed: 14991018
doi: 10.1038/nmat1080
Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).
pubmed: 22020006
doi: 10.1038/nmat3134
Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO
doi: 10.1103/PhysRevB.90.140103
Raeliarijaona, A. & Cohen, R. E. Hafnia HfO
doi: 10.1103/PhysRevB.108.094109
Lee, H.-J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO
pubmed: 32616670
doi: 10.1126/science.aba0067
Zhou, S., Zhang, J. & Rappe, A. M. Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity. Sci. Adv. 8, eadd5953 (2022).
pubmed: 36427321
pmcid: 9699663
doi: 10.1126/sciadv.add5953
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
doi: 10.1103/PhysRevB.50.17953
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).
doi: 10.1103/PhysRevLett.45.566
Bernardini, F. & Fiorentini, V. Electronic dielectric constants of insulators calculated by the polarization method. Phys. Rev. B 58, 15292–15295 (1998).
doi: 10.1103/PhysRevB.58.15292
Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864 (1987).
pubmed: 10034557
doi: 10.1103/PhysRevLett.58.1861
Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997).
doi: 10.1103/PhysRevB.55.10337
Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).
doi: 10.1103/PhysRevB.55.10355
Giannozzi, P., de Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991).
doi: 10.1103/PhysRevB.43.7231
Waghmare, U. V. & Rabe, K. M. Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO
doi: 10.1103/PhysRevB.55.6161
Esfarjani, K. & Stokes, H. T. Method to extract anharmonic force constants from first principles calculations. Phys. Rev. B 77, 144112 (2008).
doi: 10.1103/PhysRevB.77.144112
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
doi: 10.1016/j.scriptamat.2015.07.021
Wang, Z.-H., Zhang, X. & Wei, S.-H. Origin of structural anomaly in cuprous halides. J. Phys. Chem. Lett. 13, 11438–11443 (2022).
pubmed: 36468975
doi: 10.1021/acs.jpclett.2c03375
Zhang, Y., Liu, M., Wang, J., Shimada, T. & Kitamura, T. Strain tunable ferroelectric and dielectric properties of BaZrO
doi: 10.1063/1.4883298
Toulouse, C. et al. Lattice dynamics and Raman spectrum of BaZrO
doi: 10.1103/PhysRevB.100.134102
Xie, L. & Zhu, J. The electronic structures, Born effective charges, and interatomic force constants in BaMO
doi: 10.1111/j.1551-2916.2012.05371.x
Zhang, Y., Wang, J., Sahoo, M. P. K., Shimada, T. & Kitamura, T. Strain-induced ferroelectricity and lattice coupling in BaSnO
pubmed: 28926037
doi: 10.1039/C7CP03952B
Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat. Mater. 8, 392–397 (2009).
pubmed: 19377465
doi: 10.1038/nmat2429
Zhang, Y., Li, G.-P., Shimada, T., Wang, J. & Kitamura, T. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZrO
doi: 10.1103/PhysRevB.90.184107
Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).
pubmed: 17199122
doi: 10.1038/nmat1805
Fan, S. et al. Vibrational fingerprints of ferroelectric HfO
doi: 10.1038/s41535-022-00436-8
Sternik, M. & Parlinski, K. Lattice vibrations in cubic, tetragonal, and monoclinic phases of ZrO
pubmed: 15740396
doi: 10.1063/1.1849157
Cao, R. et al. Data for ‘Softening of the optical phonon by reduced interatomic bonding strength without depolarization’. Figshare https://doi.org/10.6084/m9.figshare.26826472 (2024).
Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).
doi: 10.1021/jp000114x
Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. Non-d
doi: 10.1103/PhysRevB.79.205119
Qin, G. et al. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Phys. Rev. B 94, 165445 (2016).
doi: 10.1103/PhysRevB.94.165445
Ghosez, P., Cockayne, E., Waghmare, U. V. & Rabe, K. M. Lattice dynamics of BaTiO
doi: 10.1103/PhysRevB.60.836
Crema, A. P. S. et al. Ferroelectric orthorhombic ZrO
doi: 10.1002/advs.202207390
Huang, K.-W. et al. Sub-7-nm textured ZrO
doi: 10.1016/j.actamat.2020.116536
Chae, K. et al. Local epitaxial templating effects in ferroelectric and antiferroelectric ZrO
pubmed: 35929399
doi: 10.1021/acsami.2c03151
Xu, B., Lomenzo, P. D., Kersch, A., Mikolajick, T. & Schroeder, U. Influence of Si-doping on 45 nm thick ferroelectric ZrO
doi: 10.1021/acsaelm.2c00608
Starschich, S., Schenk, T., Schroeder, U. & Boettger, U. Ferroelectric and piezoelectric properties of Hf
doi: 10.1063/1.4983031
Wu, Y. et al. Unconventional polarization-switching mechanism in (Hf,Zr)O
pubmed: 38101373
doi: 10.1103/PhysRevLett.131.226802