Softening of the optical phonon by reduced interatomic bonding strength without depolarization.


Journal

Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462

Informations de publication

Date de publication:
Oct 2024
Historique:
received: 31 01 2023
accepted: 23 09 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: ppublish

Résumé

Softening of the transverse optical (TO) phonon, which could trigger ferroelectric phase transition, can usually be achieved by enhancing the long-range Coulomb interaction over the short-range bonding force

Identifiants

pubmed: 39478211
doi: 10.1038/s41586-024-08099-0
pii: 10.1038/s41586-024-08099-0
doi:

Substances chimiques

Titanium D1JT611TNE
Oxides 0
Zirconium C6V6S92N3C
perovskite 12194-71-7
Calcium Compounds 0
Hafnium X71938L1DO
Oxygen S88TT14065

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1080-1085

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature Limited.

Références

Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).
doi: 10.1038/358136a0
Zhong, W., King-Smith, R. D. & Vanderbilt, D. Giant LO-TO splittings in perovskite ferroelectrics. Phys. Rev. Lett. 72, 3618–3621 (1994).
pubmed: 10056245 doi: 10.1103/PhysRevLett.72.3618
Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).
pubmed: 12673246 doi: 10.1038/nature01501
Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).
pubmed: 17036000 doi: 10.1038/nature05148
Yim, K. et al. Novel high-κ dielectrics for next-generation electronic devices screened by automated ab initio calculations. NPG Asia Mater. 7, e190–e190 (2015).
doi: 10.1038/am.2015.57
Cheema, S. S. et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022).
pubmed: 35536900 doi: 10.1126/science.abm8642
Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).
pubmed: 32322080 doi: 10.1038/s41586-020-2208-x
Bousquet, E., Spaldin, N. A. & Ghosez, P. Strain-induced ferroelectricity in simple rocksalt binary oxides. Phys. Rev. Lett. 104, 037601 (2010).
pubmed: 20366683 doi: 10.1103/PhysRevLett.104.037601
Li, C. W. et al. Orbitally driven giant phonon anharmonicity in SnSe. Nat. Phys. 11, 1063–1069 (2015).
doi: 10.1038/nphys3492
Shportko, K. et al. Resonant bonding in crystalline phase-change materials. Nat. Mater. 7, 653–658 (2008).
pubmed: 18622406 doi: 10.1038/nmat2226
Robertson, J. High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004).
doi: 10.1051/epjap:2004206
Delaire, O. et al. Giant anharmonic phonon scattering in PbTe. Nat. Mater. 10, 614–619 (2011).
pubmed: 21642983 doi: 10.1038/nmat3035
Lee, S. et al. Resonant bonding leads to low lattice thermal conductivity. Nat. Commun. 5, 3525 (2014).
pubmed: 24770354 doi: 10.1038/ncomms4525
Ghosez, P., Michenaud, J.-P. & Gonze, X. Dynamical atomic charges: the case of ABO
doi: 10.1103/PhysRevB.58.6224
Cochran, W. Crystal stability and the theory of ferroelectricity. Phys. Rev. Lett. 3, 412–414 (1959).
doi: 10.1103/PhysRevLett.3.412
Axe, J. D. Apparent ionic charges and vibrational eigenmodes of BaTiO
doi: 10.1103/PhysRev.157.429
Sirenko, A. A. et al. Soft-mode hardening in SrTiO
pubmed: 10746720 doi: 10.1038/35006023
Kang, S. et al. Highly enhanced ferroelectricity in HfO
pubmed: 35549417 doi: 10.1126/science.abk3195
Kalinin, S. V., Kim, Y., Fong, D. D. & Morozovska, A. N. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures. Rep. Prog. Phys. 81, 036502 (2018).
pubmed: 29368693 doi: 10.1088/1361-6633/aa915a
Lee, D. et al. Emergence of room-temperature ferroelectricity at reduced dimensions. Science 349, 1314–1317 (2015).
pubmed: 26383947 doi: 10.1126/science.aaa6442
Ahn, C. H., Rabe, K. M. & Triscone, J.-M. Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures. Science 303, 488–491 (2004).
pubmed: 14739450 doi: 10.1126/science.1092508
Noheda, B. & Íñiguez, J. A key piece of the ferroelectric hafnia puzzle. Science 369, 1300–1301 (2020).
pubmed: 32913088 doi: 10.1126/science.abd1212
Warusawithana, M. P. et al. A ferroelectric oxide made directly on silicon. Science 324, 367–370 (2009).
pubmed: 19372426 doi: 10.1126/science.1169678
Cheema, S. S. et al. Ultrathin ferroic HfO
pubmed: 35388197 doi: 10.1038/s41586-022-04425-6
Harrison, W. A. Elementary Electronic Structure (World Scientific, 1999).
Rabe, K. M., Ahn, C. H. & Triscone, J. Physics of Ferroelectrics: A Modern Perspective (Springer, 2007).
Pauling, L. The size of ions and the structure of ionic crystals. J. Am. Chem. Soc. 49, 765–790 (1927).
doi: 10.1021/ja01402a019
Shannon, R. D. & Prewitt, C. T. Effective ionic radii in oxides and fluorides. Acta Crystallogr. B Struct. Sci. 25, 925–946 (1969).
doi: 10.1107/S0567740869003220
Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO
pubmed: 15306803 doi: 10.1038/nature02773
Hatt, A. J., Spaldin, N. A. & Ederer, C. Strain-induced isosymmetric phase transition in BiFeO
doi: 10.1103/PhysRevB.81.054109
Iwazaki, Y., Suzuki, T., Mizuno, Y. & Tsuneyuki, S. Doping-induced phase transitions in ferroelectric BaTiO
doi: 10.1103/PhysRevB.86.214103
Moriwake, H. et al. The electric field induced ferroelectric phase transition of AgNbO
doi: 10.1063/1.4941319
Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO
pubmed: 14991018 doi: 10.1038/nmat1080
Greaves, G. N., Greer, A. L., Lakes, R. S. & Rouxel, T. Poisson’s ratio and modern materials. Nat. Mater. 10, 823–837 (2011).
pubmed: 22020006 doi: 10.1038/nmat3134
Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO
doi: 10.1103/PhysRevB.90.140103
Raeliarijaona, A. & Cohen, R. E. Hafnia HfO
doi: 10.1103/PhysRevB.108.094109
Lee, H.-J. et al. Scale-free ferroelectricity induced by flat phonon bands in HfO
pubmed: 32616670 doi: 10.1126/science.aba0067
Zhou, S., Zhang, J. & Rappe, A. M. Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity. Sci. Adv. 8, eadd5953 (2022).
pubmed: 36427321 pmcid: 9699663 doi: 10.1126/sciadv.add5953
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).
doi: 10.1103/PhysRevB.50.17953
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).
doi: 10.1103/PhysRevB.54.11169
Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980).
doi: 10.1103/PhysRevLett.45.566
Bernardini, F. & Fiorentini, V. Electronic dielectric constants of insulators calculated by the polarization method. Phys. Rev. B 58, 15292–15295 (1998).
doi: 10.1103/PhysRevB.58.15292
Baroni, S., Giannozzi, P. & Testa, A. Green’s-function approach to linear response in solids. Phys. Rev. Lett. 58, 1861–1864 (1987).
pubmed: 10034557 doi: 10.1103/PhysRevLett.58.1861
Gonze, X. First-principles responses of solids to atomic displacements and homogeneous electric fields: Implementation of a conjugate-gradient algorithm. Phys. Rev. B 55, 10337–10354 (1997).
doi: 10.1103/PhysRevB.55.10337
Gonze, X. & Lee, C. Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355–10368 (1997).
doi: 10.1103/PhysRevB.55.10355
Giannozzi, P., de Gironcoli, S., Pavone, P. & Baroni, S. Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B 43, 7231–7242 (1991).
doi: 10.1103/PhysRevB.43.7231
Waghmare, U. V. & Rabe, K. M. Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO
doi: 10.1103/PhysRevB.55.6161
Esfarjani, K. & Stokes, H. T. Method to extract anharmonic force constants from first principles calculations. Phys. Rev. B 77, 144112 (2008).
doi: 10.1103/PhysRevB.77.144112
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
doi: 10.1016/j.scriptamat.2015.07.021
Wang, Z.-H., Zhang, X. & Wei, S.-H. Origin of structural anomaly in cuprous halides. J. Phys. Chem. Lett. 13, 11438–11443 (2022).
pubmed: 36468975 doi: 10.1021/acs.jpclett.2c03375
Zhang, Y., Liu, M., Wang, J., Shimada, T. & Kitamura, T. Strain tunable ferroelectric and dielectric properties of BaZrO
doi: 10.1063/1.4883298
Toulouse, C. et al. Lattice dynamics and Raman spectrum of BaZrO
doi: 10.1103/PhysRevB.100.134102
Xie, L. & Zhu, J. The electronic structures, Born effective charges, and interatomic force constants in BaMO
doi: 10.1111/j.1551-2916.2012.05371.x
Zhang, Y., Wang, J., Sahoo, M. P. K., Shimada, T. & Kitamura, T. Strain-induced ferroelectricity and lattice coupling in BaSnO
pubmed: 28926037 doi: 10.1039/C7CP03952B
Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal–oxide interfaces. Nat. Mater. 8, 392–397 (2009).
pubmed: 19377465 doi: 10.1038/nmat2429
Zhang, Y., Li, G.-P., Shimada, T., Wang, J. & Kitamura, T. Disappearance of ferroelectric critical thickness in epitaxial ultrathin BaZrO
doi: 10.1103/PhysRevB.90.184107
Ramesh, R. & Spaldin, N. A. Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007).
pubmed: 17199122 doi: 10.1038/nmat1805
Fan, S. et al. Vibrational fingerprints of ferroelectric HfO
doi: 10.1038/s41535-022-00436-8
Sternik, M. & Parlinski, K. Lattice vibrations in cubic, tetragonal, and monoclinic phases of ZrO
pubmed: 15740396 doi: 10.1063/1.1849157
Cao, R. et al. Data for ‘Softening of the optical phonon by reduced interatomic bonding strength without depolarization’. Figshare https://doi.org/10.6084/m9.figshare.26826472 (2024).
Hill, N. A. Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000).
doi: 10.1021/jp000114x
Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. Non-d
doi: 10.1103/PhysRevB.79.205119
Qin, G. et al. Resonant bonding driven giant phonon anharmonicity and low thermal conductivity of phosphorene. Phys. Rev. B 94, 165445 (2016).
doi: 10.1103/PhysRevB.94.165445
Ghosez, P., Cockayne, E., Waghmare, U. V. & Rabe, K. M. Lattice dynamics of BaTiO
doi: 10.1103/PhysRevB.60.836
Crema, A. P. S. et al. Ferroelectric orthorhombic ZrO
doi: 10.1002/advs.202207390
Huang, K.-W. et al. Sub-7-nm textured ZrO
doi: 10.1016/j.actamat.2020.116536
Chae, K. et al. Local epitaxial templating effects in ferroelectric and antiferroelectric ZrO
pubmed: 35929399 doi: 10.1021/acsami.2c03151
Xu, B., Lomenzo, P. D., Kersch, A., Mikolajick, T. & Schroeder, U. Influence of Si-doping on 45 nm thick ferroelectric ZrO
doi: 10.1021/acsaelm.2c00608
Starschich, S., Schenk, T., Schroeder, U. & Boettger, U. Ferroelectric and piezoelectric properties of Hf
doi: 10.1063/1.4983031
Wu, Y. et al. Unconventional polarization-switching mechanism in (Hf,Zr)O
pubmed: 38101373 doi: 10.1103/PhysRevLett.131.226802

Auteurs

Ruyue Cao (R)

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China.
Department of Engineering, University of Cambridge, Cambridge, UK.

Qiao-Lin Yang (QL)

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China.

Hui-Xiong Deng (HX)

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China. hxdeng@semi.ac.cn.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China. hxdeng@semi.ac.cn.

Su-Huai Wei (SH)

Eastern Institute of Technology, Ningbo, China. suhuaiwei@eitech.edu.cn.

John Robertson (J)

Department of Engineering, University of Cambridge, Cambridge, UK.

Jun-Wei Luo (JW)

State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China. jwluo@semi.ac.cn.
Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China. jwluo@semi.ac.cn.

Articles similaires

Cobalt Azo Compounds Ferric Compounds Polyesters Photolysis
Humans Pulmonary Disease, Chronic Obstructive Exercise Tolerance Male Aged
Animals Aquatic Organisms Ecosystem Oxygen Thermotolerance

Scalable ultrastrong MXene films with superior osteogenesis.

Sijie Wan, Ying Chen, Chaojie Huang et al.
1.00
Osteogenesis Animals Tensile Strength Titanium Mice

Classifications MeSH