Bacterial endophyte Pseudomonas mosselii PR5 improves growth, nutrient accumulation, and yield of rice (Oryza sativa L.) through various application methods.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 10 06 2024
accepted: 30 09 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Pseudomonas spp. have drawn considerable attention due to their rhizospheric abundance and exceptional plant growth-promoting attributes. However, more research is needed on the optimal application methods of Pseudomonas mosselii for rice growth, nutrient accumulation, and yield improvement. This research explored the application of the endophytic bacterium P. mosselii PR5 on rice cultivar BRRI dhan29 with four treatments: control, seedling priming, root drenching, and bacterial cell-free culture (CFC) foliar application. PR5 led to better rice growth, improved nutrient acquisition, and higher yields compared to the control, regardless of the application method used. The highest results in fresh weight of root (146.93 g/pot), shoot (758.98 g/pot), and flag leaf (7.88 g/pot), dry weight of root (42.16 g/pot), shoot (97.32 g/pot), and flag leaf (2.69 g/pot), and grains/panicle (224.67), were obtained from seedling priming treatment, whereas root drenching resulted in maximum plant height (105.67 cm), root length (49.0 cm), tillers/pot (23.7), and panicles/pot (17.67). In all three application methods, rice grain yield per pot was higher in PR5 inoculated treatments, compared to the control. The amount of P, Mg and Zn in the shoot and N, P, Ca, Mg and Si content in the flag leaf was significantly increased along with effective suppression of naturally occurring blast disease in bacterial CFC foliar application, validated by multivariate analysis. Our results indicated that rice seedlings priming with PR5 improved rice growth, yield and nutrient uptake, whereas CFC foliar application significantly increased the concentration of most nutrients in the rice plant and suppressed the naturally occurring rice blast disease. This research highlights the significant potential of P. mosselii PR5 in enhancing rice growth, yield, and nutrient uptake, particularly through seedling priming and CFC foliar application methods.

Sections du résumé

BACKGROUND BACKGROUND
Pseudomonas spp. have drawn considerable attention due to their rhizospheric abundance and exceptional plant growth-promoting attributes. However, more research is needed on the optimal application methods of Pseudomonas mosselii for rice growth, nutrient accumulation, and yield improvement. This research explored the application of the endophytic bacterium P. mosselii PR5 on rice cultivar BRRI dhan29 with four treatments: control, seedling priming, root drenching, and bacterial cell-free culture (CFC) foliar application.
RESULTS RESULTS
PR5 led to better rice growth, improved nutrient acquisition, and higher yields compared to the control, regardless of the application method used. The highest results in fresh weight of root (146.93 g/pot), shoot (758.98 g/pot), and flag leaf (7.88 g/pot), dry weight of root (42.16 g/pot), shoot (97.32 g/pot), and flag leaf (2.69 g/pot), and grains/panicle (224.67), were obtained from seedling priming treatment, whereas root drenching resulted in maximum plant height (105.67 cm), root length (49.0 cm), tillers/pot (23.7), and panicles/pot (17.67). In all three application methods, rice grain yield per pot was higher in PR5 inoculated treatments, compared to the control. The amount of P, Mg and Zn in the shoot and N, P, Ca, Mg and Si content in the flag leaf was significantly increased along with effective suppression of naturally occurring blast disease in bacterial CFC foliar application, validated by multivariate analysis.
CONCLUSION CONCLUSIONS
Our results indicated that rice seedlings priming with PR5 improved rice growth, yield and nutrient uptake, whereas CFC foliar application significantly increased the concentration of most nutrients in the rice plant and suppressed the naturally occurring rice blast disease. This research highlights the significant potential of P. mosselii PR5 in enhancing rice growth, yield, and nutrient uptake, particularly through seedling priming and CFC foliar application methods.

Identifiants

pubmed: 39478459
doi: 10.1186/s12870-024-05649-6
pii: 10.1186/s12870-024-05649-6
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1030

Informations de copyright

© 2024. The Author(s).

Références

Sharif MK, Butt MS, Anjum FM, Khan SH. Rice bran: a novel functional ingredient. Crit Rev Food Sci Nutri. 2014;54(6):807–16. https://doi.org/10.1080/10408398.2011.608586 .
doi: 10.1080/10408398.2011.608586
Muthayya S, Sugimoto JD, Montgomery S, Maberly GF. An overview of global rice production, supply, trade, and consumption. Ann N Y Acad Sci. 2014;1324(1):7–14. https://doi.org/10.1111/nyas.12540 .
doi: 10.1111/nyas.12540 pubmed: 25224455
Pérez-Montaño F, Alías-Villegas C, Bellogín RA, Del Cerro P, Espuny MR, Jiménez-Guerrero I, López-Baena FJ, Ollero FJ, Cubo T. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microb Res. 2014;169(5–6):325–36. https://doi.org/10.1016/j.micres.2013.09.011 .
doi: 10.1016/j.micres.2013.09.011
Pahalvi HN, Rafiya L, Rashid S, Nisar B, Kamili AN. Chemical fertilizers and their impact on soil health. Microbiota and Biofertilizers, Vol 2: Ecofriendly tools for reclamation of degraded soil environs. 2021:1–20. https://doi.org/10.1007/978-3-030-61010-4_1
Liu M, Hu F, Chen X, Huang Q, Jiao J, Zhang B, Li H. Organic amendments with reduced chemical fertilizer promote soil microbial development and nutrient availability in a subtropical paddy field: the influence of quantity, type and application time of organic amendments. Appl Soil Ecol. 2009;42(2):166–75. https://doi.org/10.1016/j.apsoil.2009.03.006 .
doi: 10.1016/j.apsoil.2009.03.006
Ozlu E, Kumar S. Response of surface GHG fluxes to long-term manure and inorganic fertilizer application in corn and soybean rotation. Sci Tot Environ. 2018;626:817–25. https://doi.org/10.1016/j.scitotenv.2018.01.120 .
doi: 10.1016/j.scitotenv.2018.01.120
Smith P, Haberl H, Popp A, Erb KH, Lauk C, Harper R, Tubiello FN, de Siqueira Pinto A, Jafari M, Sohi S, Masera O. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biol. 2013;19(8):2285–302. https://doi.org/10.1111/gcb.12160 .
doi: 10.1111/gcb.12160
Richardson Y, Blin J, Julbe A. A short overview on purification and conditioning of syngas produced by biomass gasification: catalytic strategies, process intensification and new concepts. Prog Energ Combust Sci. 2012;38:765–81. https://doi.org/10.1016/j.pecs.2011.12.001 .
doi: 10.1016/j.pecs.2011.12.001
Canfield DE, Glazer AN, Falkowski PG. The evolution and future of Earth’s nitrogen cycle. Science. 2010;330(6001):192–6. https://doi.org/10.1126/science.1186120 .
doi: 10.1126/science.1186120 pubmed: 20929768
Kumar M, Giri VP, Pandey S, Gupta A, Patel MK, Bajpai AB, Jenkins S, Siddique KH. Plant-growth-promoting rhizobacteria emerging as an effective bioinoculant to improve the growth, production, and stress tolerance of vegetable crops. Int J Mol Sci Int J Mol Sci. 2021;22(22):12245. https://doi.org/10.3390/ijms222212245 .
doi: 10.3390/ijms222212245 pubmed: 34830124
Weller DM. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol. 1988;26(1):379–407. https://doi.org/10.1146/annurev.py.26.090188.002115 .
doi: 10.1146/annurev.py.26.090188.002115
Lynch JM. Introduction: some consequences of microbial rhizosphere competence for plant and soil. Rhizos. 1990; 1–10.
Gupta R, Singh A, Srivastava M, Shanker K, Pandey R. Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress. Microbiol Res. 2019;218:87–96. https://doi.org/10.1016/j.micres.2018.10.006 .
doi: 10.1016/j.micres.2018.10.006 pubmed: 30454662
Jilling A, Keiluweit M, Contosta AR, Frey S, Schimel J, Schnecker J, Smith RG, Tiemann L, Grandy AS. Minerals in the rhizosphere: overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemist. 2018;139:103–22. https://doi.org/10.1007/s10533-018-0459-5 .
doi: 10.1007/s10533-018-0459-5
Artyszak A, Gozdowski D. The effect of growth activators and plant growth-promoting rhizobacteria (PGPR) on the soil properties, root yield, and technological quality of sugar beet. Agron. 2020;10(9):1262. https://doi.org/10.3390/agronomy10091262 .
doi: 10.3390/agronomy10091262
Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK. Rhizospheric microbiomes: Biodiversity, mechanisms of Plant Growth Promotion, and Biotechnological Applications for sustainable agriculture. In: Kumar A, Meena V, editors. Plant Growth promoting Rhizobacteria for Agricultural sustainability. Singapore: Springer; 2019. pp. 19–65. https://doi.org/10.1007/978-981-13-7553-8_2 .
doi: 10.1007/978-981-13-7553-8_2
Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 1989;7(2):39–44. https://doi.org/10.1016/0167-7799(89)90057-7 .
doi: 10.1016/0167-7799(89)90057-7
Kurrey DK, Sharma R, Lahre MK, Kurrey RL. Effect of Azotobacter on physio-chemical characteristics of soil in onion field. Pharma Innov J. 2018;7(2):108–13.
Dey RK, Pal KK, Bhatt DM, Chauhan SM. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res. 2004;159(4):371–94. https://doi.org/10.1016/j.micres.2004.08.004 .
doi: 10.1016/j.micres.2004.08.004 pubmed: 15646384
Herman MA, Nault BA, Smart CD. Effects of plant growth-promoting rhizobacteria on bell pepper production and green peach aphid infestations in New York. Crop Protect. 2008;27(6):996–1002. https://doi.org/10.1016/j.cropro.2007.12.004 .
doi: 10.1016/j.cropro.2007.12.004
Bhattacharyya PN, Jha DK. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol. 2012;28:1327–50. https://doi.org/10.1007/s11274-011-0979-9 .
doi: 10.1007/s11274-011-0979-9 pubmed: 22805914
Kumari B, Mallick MA, Solanki MK, Solanki AC, Hora A, Guo W. Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. In Ansari, Rizwan Ali, and Irshad Mahmood, eds. Plant Health Under Biotic Stress: Volume 2: Microbial Interactions, Springer. 2019; 109–127. https://doi.org/10.1007/978-981-13-6040-4_6
Sah S, Singh R. Phylogenetical coherence of Pseudomonas in unexplored soils of himalayan region. 3 Biotech. 2016;6:1–0. https://doi.org/10.1007/s13205-016-0493-8 .
doi: 10.1007/s13205-016-0493-8
Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, Loper JE, et al. Genome-based evolutionary history of Pseudomonas spp. Environ Microbiol. 2018;20(6):2142–59. https://doi.org/10.1111/1462-2920.14130 .
doi: 10.1111/1462-2920.14130 pubmed: 29633519
Selvakumar G, Panneerselvam P, Bindu GH, Ganeshamurthy AN. Pseudomonads: plant growth promotion and beyond. Plant Microbes Symbiosis: Appl Facets. 2015;193–208. https://doi.org/10.1007/978-81-322-2068-8_10 .
Raaijmakers JM, Mazzola M. Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic bacteria. Annu Rev Phytopathol. 2012;50:403–24. https://doi.org/10.1146/annurev-phyto-081211-172908 .
doi: 10.1146/annurev-phyto-081211-172908 pubmed: 22681451
Deshwal VK, Kumar P. Plant growth promoting activity of pseudomonads in Rice crop. Int J Curr Microbiol App Sci. 2013;2(11):152–7. https://doi.org/10.1007/978-81-322-2068-8_10 .
doi: 10.1007/978-81-322-2068-8_10
Singh P, Singh RK, Zhou Y, Wang J, Jiang Y, Shen N, Wang Y, Yang L, Jiang M. Unlocking the strength of plant growth promoting Pseudomonas in improving crop productivity in normal and challenging environments: a review. J Plant Interact. 2022;17(1):220–38. https://doi.org/10.1080/17429145.2022.2029963 .
doi: 10.1080/17429145.2022.2029963
Muleta D, Assefa F, Hjort K, Roos S, Granhall U. Characterization of Rhizobacteria isolated from wild Coffea arabica L. Eng Life Sci. 2009;9(2):100–8. https://doi.org/10.1002/elsc.200700031 .
doi: 10.1002/elsc.200700031
Podile A, Kishore G. Plant growth-promoting rhizobacteria. Plant-associat Bact. 2006;195–230. https://doi.org/10.1007/978-1-4020-4538-7_6 .
Park GS, Chu JH, Hong SJ, Kwak Y, Khan AR, Jung BK, Ullah I, Shin JH. Complete genome sequence of the caprolactam-degrading bacterium Pseudomonas mosselii SJ10 isolated from wastewater of a nylon 6 production plant. J Biotechnol. 2014;192:263–4. https://doi.org/10.1016/j.jbiotec.2014.10.024 .
doi: 10.1016/j.jbiotec.2014.10.024 pubmed: 25449545
La Torre-Ruiz D, Ruiz-Valdiviezo VM, Rincón-Molina CI, Rodríguez-Mendiola M, Arias-Castro C, Gutiérrez-Miceli FA, Palomeque-Dominguez H, Rincón-Rosales R. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Braz J Microbiol. 2016;47:587–96. https://doi.org/10.1016/j.bjm.2016.04.010 .
doi: 10.1016/j.bjm.2016.04.010 pubmed: 27268113
Naik PR, Raman G, Narayanan KB, Sakthivel N. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 2008;8:1–4. https://doi.org/10.1016/j.bjm.2016.04.010 .
doi: 10.1016/j.bjm.2016.04.010
Nishanth Kumar S, Aravind SR, Jacob J, Gopinath G, Lankalapalli RS, Sreelekha TT, Dileep Kumar BS. Pseudopyronine B: a potent antimicrobial and anticancer molecule isolated from a Pseudomonas mosselii. Front Microbiol. 2016;7:1307. https://doi.org/10.3389/fmicb.2016.01307 .
doi: 10.3389/fmicb.2016.01307 pubmed: 27617005 pmcid: 5000868
Yang R, Shi Q, Huang T, Yan Y, Li S, Fang Y, Li Y, Liu L, Liu L, Wang X, Peng Y. The natural pyrazolotriazine pseudoiodinine from Pseudomonas mosselii 923 inhibits plant bacterial and fungal pathogens. Nat Commun. 2023;14(1):734. https://doi.org/10.1038/s41467-023-36433-z .
doi: 10.1038/s41467-023-36433-z pubmed: 36759518 pmcid: 9911603
Sultana R, Islam SM, Sultana T. Arsenic and other heavy metals resistant bacteria in rice ecosystem: potential role in promoting plant growth and tolerance to heavy metal stress. Environ Technol Innov. 2023;31:103160. https://doi.org/10.1016/j.eti.2023.103160 .
doi: 10.1016/j.eti.2023.103160
Jackson ML. Soil Chemical Analysis. Prentice Hall Inc. Englewood Cliffs: NJ, New York; 1973.
Page AL, Miller RH, Keeney DR. Methods of soil Analysis. Part-2. 2nd Ed. American Soc Agron. Soil Sci Soc America.1982; 4:167–179. Madison, WI, USA.
Bremner JM. Total nitrogen. Methods of soil analysis: part 2 chemical and microbiological properties. 1965; 9:1149–1178.
Olsen SR. Estimation of available phosphorus in soils by extraction with sodium bicarbonate (No. 939). US Department of Agriculture; 1954.
Black CA. Method of soil analysis part 2. Chem Microbiol Prop. 1965;9:1387–8.
Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Meth. 2007;70(1):127–31. https://doi.org/10.1016/j.mimet.2007.03.023 .
doi: 10.1016/j.mimet.2007.03.023
Louden BC, Haarmann D, Lynne AM. Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ. 2011;12(1):51–3. https://doi.org/10.1128/jmbe.v12i1.249 .
doi: 10.1128/jmbe.v12i1.249 pubmed: 23653742 pmcid: 3577196
Gandhi A, Muralidharan G. Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol. 2016;76(1):1–8. https://doi.org/10.1016/j.ejsobi.2016.06.006 .
doi: 10.1016/j.ejsobi.2016.06.006
Sharma RK, Ghose R. Synthesis and characterization of nanocrystalline zinc aluminate spinel powder by sol-gel method. Ceram Int. 2014;40:3209–14. https://doi.org/10.1016/j.ceramint.2013.09.121 .
doi: 10.1016/j.ceramint.2013.09.121
Naureen Z, Aqeel M, Hassan MN, Gilani SA, Bouqellah N, Mabood F, Hussain J, Hafeez FY. Isolation and screening of silicate bacteria from various habitats for biological control of phytopathogenic fungi. Am J Plant Sci. 2015;6(18):2850. https://doi.org/10.4236/ajps.2015.618282 .
doi: 10.4236/ajps.2015.618282
Chen YT, Yuan Q, Shan LT, Lin MA, Cheng DQ, Li CY. Antitumor activity of bacterial exopolysaccharides from the endophyte Bacillus amyloliquefaciens sp. isolated from Ophiopogon japonicus. Oncol Let. 2013;5(6):1787–92. https://doi.org/10.3892/ol.2013.1284 .
doi: 10.3892/ol.2013.1284
Anonymous FR, Guide. Published by Bangladesh Agricultural Research Council (BARC). Bangladesh: Dhaka; 2018.
Murunde R, Ringo G, Robinson-Boyer L, Xu X. Effective biocontrol of rice blast through dipping transplants and foliar applications. Agronomy. 2022;12(3):592. https://doi.org/10.3390/agronomy12030592 .
doi: 10.3390/agronomy12030592
Sultana R, Islam SMN, Shuvo SB, Ehsan GM, Saha P, Khan MM, Rumman N. Endophytic bacterium Sphingomonas panaciterrae NB5 influences soil properties and improves growth, nutrient contents, and yield of red amaranth (Amaranthus tricolor L). Curr Plant Biology. 2024a;39:100372. https://doi.org/10.1016/j.cpb.2024.100372 .
doi: 10.1016/j.cpb.2024.100372
Estefan G. Methods of soil, plant, and water analysis: a manual for the West Asia and North Africa region. 2013.
Ghosh AB, Bajaj JC, Hasan R, Singh D. Soil and Water Testing Method. A Laboratory Manual, Division of Soil Science and Agricultural Chemistry. New Delhi: IARI; 1983. pp. 1–48.
Tandon HLS. Methods of Analysis of Soils, Plants, Water and fertilizers. Fertilizer Development and Consultation Organization. India: New Delhi; 1995. pp. 44–5.
Chandra D, Sharma AK. Field evaluation of consortium of bacterial inoculants producing ACC deaminase on growth, nutrients and yield components of rice and wheat. J Crop Sci Biotechnol. 2021;24(3):293–305. https://doi.org/10.1007/s12892-020-00077-y .
doi: 10.1007/s12892-020-00077-y
Rojas-Sánchez B, Orozco-Mosqueda MD, Santoyo G. Field Assessment of a plant growth-promoting Pseudomonas on Phytometric, nutrient, and Yield Components of Maize in a Milpa Agrosystem. Agril Res. 2024;1–6. https://doi.org/10.1007/s40003-024-00756-0 .
Ding H, Luo C, Li Y, Li Q, Dong Y. Impact of Bacillus subtilis and Pseudomonas fluorescens beneficial bacterial agents on soil-borne diseases, growth, and economics of continuous cropping of flue-cured tobacco. Crop Protect. 2024;177:106556. https://doi.org/10.1016/j.cropro.2023.106556 .
doi: 10.1016/j.cropro.2023.106556
Mehmood N, Saeed M, Zafarullah S, Hyder S, Rizvi ZF, Gondal AS, Jamil N, Iqbal R, Ali B, Ercisli S, Kupe M. Multifaceted impacts of plant-beneficial pseudomonas spp. in managing various plant diseases and crop yield improvement. ACS Omega. 2023;8(25):22296–315. https://doi.org/10.1021/acsomega.3c00870 .
doi: 10.1021/acsomega.3c00870 pubmed: 37396244 pmcid: 10308577
Pramanik K, Mandal S, Banerjee S, Ghosh A, Maiti TK, Mandal NC. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under cd stress. Chemos. 2021;274:129819. https://doi.org/10.1016/j.chemosphere.2021.129819 .
doi: 10.1016/j.chemosphere.2021.129819
Harahap RT, Azizah IR, Setiawati MR, Herdiyantoro D, Simarmata T. Enhancing upland rice growth and yield with indigenous plant growth-promoting rhizobacteria (PGPR) isolate at N-fertilizers dosage. Agriculture. 2023;13(10):1987. https://doi.org/10.3390/agriculture13101987 .
doi: 10.3390/agriculture13101987
Arora NK, Mishra J, Singh P, Fatima T. Salt-tolerant plant growth‐promoting Pseudomonas atacamensis KSS‐6 in combination with organic manure enhances rice yield, improves nutrient content and soil properties under salinity stress. J Basic Microbiol. 2024;64(6):2300767. https://doi.org/10.1002/jobm.202300767 .
doi: 10.1002/jobm.202300767
Jiménez JA, Novinscak A, Filion M. Inoculation with the plant-growth-promoting rhizobacterium Pseudomonas fluorescens LBUM677 impacts the rhizosphere microbiome of three oilseed crops. Front Microbiol. 2020;11:569366. https://doi.org/10.3389/fmicb.2020.569366 .
doi: 10.3389/fmicb.2020.569366 pubmed: 33162951 pmcid: 7581686
Lebedev VG, Popova AA, Shestibratov KA. Genetic engineering and genome editing for improving nitrogen use efficiency in plants. Cells. 2021;10:3303. https://doi.org/10.3390/cells10123303 .
doi: 10.3390/cells10123303 pubmed: 34943810 pmcid: 8699818
Hayat R, Ali S, Amara U, Khalid R, Ahmed I. Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol. 2010;60:579–98. https://doi.org/10.1007/s13213-010-0117-1 .
doi: 10.1007/s13213-010-0117-1
Przemieniecki WS, Kurowski PT, Karwowska A. Plant growth promoting potential of Pseudomonas sp. SP0113 isolated from potable water from a closed water well. Archiv Biol Sci. 2015;67(2):663–73.
doi: 10.2298/ABS141002029P
Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR. Priming for enhanced defense. Annu Rev Phytopathol. 2015;53(1):97–119. https://doi.org/10.1146/annurev-phyto-080614-120132 .
doi: 10.1146/annurev-phyto-080614-120132 pubmed: 26070330
Naik K, Mishra S, Srichandan H, Singh PK, Sarangi PK. Plant growth promoting microbes: potential link to sustainable agriculture and environment. Biocatal Agricul Biotechnol. 2019;21:101326. https://doi.org/10.1016/j.bcab.2019.101326 .
doi: 10.1016/j.bcab.2019.101326
Zhang TA, Chen HY, Ruan H. Global negative effects of nitrogen deposition on soil microbes. ISME J. 2018;12(7):1817–25. https://doi.org/10.1038/s41396-018-0096-y .
doi: 10.1038/s41396-018-0096-y pubmed: 29588494 pmcid: 6018792
Richardson AE. Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Function Plant Biol. 2001;28(9):897–906. https://doi.org/10.1071/PP01093 .
doi: 10.1071/PP01093
Yadav SN, Singh AK, Peter JK, Masih H, Benjamin JC, Singh DK, Chaudhary S, Ramteke PW, Ojha SK. Study of exopolysaccharide containing PGPRs on growth of okra plant under water stress conditions. Int J Curr Microbiol Appl Sci. 2018;7:3337–74.
doi: 10.20546/ijcmas.2018.711.385
Wu L, Xiao W, Chen G, Song D, Khaskheli MA, Li P, Zhang S, Feng G. Identification of Pseudomonas mosselii BS011 gene clusters required for suppression of rice blast fungus Magnaporthe oryzae. J Biotechnol. 2018;282:1–9. https://doi.org/10.1016/j.jbiotec.2018.04.016 .
doi: 10.1016/j.jbiotec.2018.04.016 pubmed: 29704539
Zhuo T, Chen S, Wang D, Fan X, Zhang X, Zou H. Expression of the ripAA gene in the soilborne Pseudomonas mosselii can promote the control efficacy against tobacco bacterial wilt. Biol. 2022;11(8):1170. https://doi.org/10.3390/biology11081170 .
doi: 10.3390/biology11081170
Haas D, Défago G. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol. 2005;3(4):307–19. https://doi.org/10.1038/nrmicro1129 .
doi: 10.1038/nrmicro1129 pubmed: 15759041
Whipps JM. Microbial interactions and biocontrol in the rhizosphere. J Exp Bot. 2001;52:487–511. https://doi.org/10.1093/jexbot/52.suppl_1.487 .
doi: 10.1093/jexbot/52.suppl_1.487 pubmed: 11326055
Aarab S, Ollero J, Megías M, Laglaoui A, Bakkali M, Arakrak A. Some characteristics of phosphate solubilizing rhizobacteria as an ecological strategy for sustainable agriculture. Mater Today: Proc. 2019;13:1224–8. https://doi.org/10.1016/j.matpr.2019.04.091 .
doi: 10.1016/j.matpr.2019.04.091
Ramette A, Frapolli M, Défago G, Moënne-Loccoz Y. Phylogeny of HCN synthase-encoding hcnBC genes in biocontrol fluorescent pseudomonads and its relationship with host plant species and HCN synthesis ability. Mol Plant Microbe Interact. 2003;16:525–35. https://doi.org/10.1094/MPMI.2003.16.6.525 .
doi: 10.1094/MPMI.2003.16.6.525 pubmed: 12795378
Hayasaka T, Fujii H, Ando H, Namai T. Suppression of rice seedling blast by application of silica gel as a silicon source to nursery soil. Japanese J Phytopathol. 2000;66(1):18–22. https://doi.org/10.3186/jjphytopath.66.18 .
doi: 10.3186/jjphytopath.66.18
Song A, Xue G, Cui P, Fan F, Liu H, Yin C, Sun W, Liang Y. The role of silicon in enhancing resistance to bacterial blight of hydroponic-and soil-cultured rice. Sci Rep. 2016;6(1):24640.
doi: 10.1038/srep24640 pubmed: 27091552 pmcid: 4835757
Datnoff LE, Snyder GH, Raid RN, Jones DB. Effect of calcium silicate on blast and brown spot intensities and yields of rice. Plant Dis. 1991;75:729–32.
doi: 10.1094/PD-75-0729
Seebold KW, Datnoff LE, Correa-Victoria FJ, Kucharek TA, Snyder GH. Effect of silicon rate and host resistance on blast, scald, and yield of upland rice. Plant Dis. 2000;84(8):871–6.
doi: 10.1094/PDIS.2000.84.8.871 pubmed: 30832141
Hayasaka T, Fujii H, Namai T. Silicon content in rice seedlings to protect rice blast fungus at the nursery stage. J Gen Plant Pathol. 2005;71:169–73. https://doi.org/10.1007/s10327-005-0182-7 .
doi: 10.1007/s10327-005-0182-7
Zhao Y. Auxin biosynthesis: a simple two-step pathway converts tryptophan to indole-3-acetic acid in plants. Mol Plant. 2012;5:334–8.
doi: 10.1093/mp/ssr104 pubmed: 22155950
Sharma S, Pandey R, Dimkpa CO, Kumar A, Bindraban PS. Growth Stage-Dependent Foliar Application of Iron improves its Mobilisation towards Grain and enhances Fe Use Efficiency in Rice. J Plant Growth Regul. 2023;42(9):5628–41. https://doi.org/10.1007/s00344-023-10944-x .
doi: 10.1007/s00344-023-10944-x
Sharma S, Anand N, Bindraban PS, Pandey R. Foliar application of humic acid with Fe supplement improved rice, soybean, and lettuce iron fortification. Agric. 2023;13(1):132. https://doi.org/10.3390/agriculture13010132 .
doi: 10.3390/agriculture13010132
Sultana R, Islam SMN, Sriti N, Ahmed M, Shuvo SB, Rahman MH, Jashim AI. Sphingomonas panaciterrae PB20 increases growth, photosynthetic pigments, antioxidants, and mineral nutrient contents in spinach (Spinacia oleracea L). Heliyon. 2024;10(3). https://doi.org/10.1016/j.heliyon.2024.e25596 .
Pal G, Mehta D, Singh S, Magal K, Gupta S, Jha G, Bajaj A, Ramu VS. Foliar application or seed priming of cholic acid-glycine conjugates can mitigate/prevent the rice bacterial leaf blight disease via activating plant defense genes. Front Plant Sci. 2021;12:746912. https://doi.org/10.3389/fpls.2021.746912 .
doi: 10.3389/fpls.2021.746912 pubmed: 34630495 pmcid: 8497891
Hasan A, Tabassum B, Hashim M, Khan N. Role of plant growth promoting rhizobacteria (PGPR) as a plant growth enhancer for sustainable agriculture: a review. Bacteria. 2024;3(2):59–75. https://doi.org/10.3390/bacteria3020005 .
doi: 10.3390/bacteria3020005
Jalal A, Oliveira CE, Fernandes GC, da Silva EC, da Costa KN, de Souza JS, Leite GD, Biagini AL, Galindo FS, Teixeira Filho MC. Integrated use of plant growth-promoting bacteria and nano-zinc foliar spray is a sustainable approach for wheat biofortification, yield, and zinc use efficiency. Front Plant Sci. 2023;14:1146808. https://doi.org/10.3389/fpls.2023.1146808 .
doi: 10.3389/fpls.2023.1146808 pubmed: 37223804 pmcid: 10200892

Auteurs

Razia Sultana (R)

Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh. razs@bau.edu.bd.

Asif Iqbal Ibne Jashim (AII)

Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Shah Mohammad Naimul Islam (SMN)

Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh.

Md Habibur Rahman (MH)

Department of Agricultural Chemistry, Bangladesh Agricultural University, Mymensingh, Bangladesh.

Mohammad Mahbubul Haque (MM)

Division of Plant Pathology, Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria
Fragaria Light Plant Leaves Osmosis Stress, Physiological

Classifications MeSH