Effects and safety of combined corneal collagen crosslinking and intrastromal corneal ring segment treatment in patients with keratoconus: a retrospective study.
Humans
Keratoconus
/ drug therapy
Male
Cross-Linking Reagents
/ therapeutic use
Female
Collagen
/ metabolism
Retrospective Studies
Visual Acuity
/ physiology
Corneal Stroma
/ metabolism
Adult
Photosensitizing Agents
/ therapeutic use
Young Adult
Prosthesis Implantation
/ methods
Refraction, Ocular
/ physiology
Riboflavin
/ therapeutic use
Corneal Topography
Photochemotherapy
/ methods
Prostheses and Implants
Adolescent
Ultraviolet Rays
Treatment Outcome
Follow-Up Studies
Corneal collagen crosslinking
Intrastromal corneal ring segments
Keratoconus
Journal
BMC ophthalmology
ISSN: 1471-2415
Titre abrégé: BMC Ophthalmol
Pays: England
ID NLM: 100967802
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
22
08
2024
accepted:
24
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
To evaluate the safety and efficacy of different time-point combinations of intrastromal corneal ring segment (ICRS) implantation using femtosecond technology) and corneal collagen crosslinking (CXL) for the treatment of moderate-to-severe keratoconus (KCC). This study included 69 eyes of 69 patients with keratoconus who underwent ICRS and CXL treatment at an Eye Hospital between March 2020 and March 2023. The patients were divided into two groups: Group 1 (n = 33 eyes of 33 patients), which received ICRS and CXL treatment in one session, and Group 2 (n = 36 eyes of 36 patients), which included treatment with ICRS for at least 6 months following CXL application. Preoperative and postoperative evaluations included visual acuity, autorefractometer refraction, corneal tomographic measurements using the Sirius (CSO) Scheimpflug camera and the TONOREF™ III device, and documentation of observed complications. Uncorrected visual acuity (UCVA) and best-corrected spectacle visual acuity (BCVA) were measured in each eye individually, and visual acuity was assessed using the logarithm of the minimum angle of resolution (logMAR). In Group 1, mean UCVA improved from 0.81 ± 0.34 to 0.45 ± 0.25 (p < 0.01), and mean BCVA improved from 0.76 ± 0.35 to 0.38 ± 0.20 (p < 0.01). In Group 2, mean UCVA improved from 0.71 ± 0.32 to 0.43 ± 0.30 (p < 0.01), and mean BCVA improved from 0.65 ± 0.25 to 0.31 ± 0.23 (p < 0.01). Both groups showed significant reductions in manifest spherical and cylindrical refraction (p < 0.01). Group 1 exhibited greater reductions in maximum keratometry (Kmax), flat keratometry (K1), steep keratometry (K2) (p < 0.05), and astigmatic aberration compared with group 2 (p < 0.01). The use of simultaneous or separate CXL and ICRS does not significantly increase the incidence of complications. Both combined and separate CXL and ICRS treatments resulted in significant improvement in UCVA and BCVA and reduced manifest refraction. Although improvements were observed in groups 1 and 2 in terms of K1, K2, and Kmax at 6 months, the improvements were more pronounced in Group 1. These results highlight the potential benefits of simultaneous ICRS + CXL treatment and underscore the importance of optimising the timing of CXL treatment to achieve the best visual outcomes.
Identifiants
pubmed: 39478495
doi: 10.1186/s12886-024-03745-7
pii: 10.1186/s12886-024-03745-7
doi:
Substances chimiques
Cross-Linking Reagents
0
Collagen
9007-34-5
Photosensitizing Agents
0
Riboflavin
TLM2976OFR
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
473Informations de copyright
© 2024. The Author(s).
Références
Galvis V, Sherwin T, Tello A, Merayo J, Barrera R, Acera A. Keratoconus: an inflammatory disorder? Eye (Lond). 2015 [cited 2024 Aug 18];29(7):843–59. https://pubmed.ncbi.nlm.nih.gov/25931166/
Kennedy RH, Bourne WM, Dyer JA. A 48-year clinical and epidemiologic study of keratoconus. Am J Ophthalmol. 1986 [cited 2024 Aug 18];101(3):267–73. https://pubmed.ncbi.nlm.nih.gov/3513592/
Ferdi AC, Kandel H, Nguyen V, Tan J, Arnalich-Montiel F, Abbondanza M et al. Five-year corneal cross-linking outcomes: a save sight keratoconus registry study. Clin Experiment Ophthalmol. 2023 [cited 2024 Aug 18];51(1):9–18. https://pubmed.ncbi.nlm.nih.gov/36240047/
Salman A, Mazzotta C, Kailani O, Ghabra M, Omran R, Balamoun AA et al. Diagnostic accuracy of corneal and epithelial thickness map parameters to detect keratoconus and suspect keratoconus. J Ophthalmol. 2023 [cited 2024 Jul 24];2023. https://pubmed.ncbi.nlm.nih.gov/37842327/
Taşcı YY, Saraç Ö, Çağıl N, Yeşilırmak N. Comparison of hybrid contact lenses and rigid gas-permeable contact lenses in moderate and advanced keratoconus. Turkish J Ophthalmol. 2023 [cited 2024 Aug 18];53(3):142–8. https://pubmed.ncbi.nlm.nih.gov/37345297/
Struckmeier AK, Hamon L, Flockerzi E, Munteanu C, Seitz B, Daas L. Femtosecond laser and mechanical dissection for ICRS and MyoRing implantation: a meta-analysis. Cornea. 2022 [cited 2024 Aug 18];41(4):518–37. https://pubmed.ncbi.nlm.nih.gov/34839335/
Deshmukh R, Ong ZZ, Rampat R, Alió del Barrio JL, Barua A, Ang M et al. Management of keratoconus: an updated review. Front Med. 2023 [cited 2024 Aug 18];10. https://pubmed.ncbi.nlm.nih.gov/37409272/
Akowuah PK, Kobia-Acquah E, Donkor R, Adjei-Anang J, Ankamah-Lomotey S. Keratoconus in Africa: a systematic review and meta-analysis. Ophthalmic Physiol Opt. 2021 [cited 2024 Aug 18];41(4):736–47. https://pubmed.ncbi.nlm.nih.gov/33860963/
Yu K, Lian XF, Jiang XY, Zhou SY. Efficacy of immunosuppressants in high rejection risk keratoplasty: a meta-analysis of comparative studies. Cornea. 2021 [cited 2024 Aug 18];40(6):800–7. https://pubmed.ncbi.nlm.nih.gov/33941717/
Abozaid MA, Abo-Ali Hassan A, Abdalla A. Intrastromal corneal ring segments implantation and corneal cross-linking for keratoconus in children with vernal keratoconjunctivitis - three-year results. Clin Ophthalmol. 2019 [cited 2024 Aug 18];13:2151–7. https://pubmed.ncbi.nlm.nih.gov/31806928/
Zaky AG, KhalafAllah MT, Sarhan AE. Combined corneal cross-linking and 320° intrastromal corneal ring segments in progressive keratoconus: one-year results. Graefes Arch Clin Exp Ophthalmol. 2020 [cited 2024 Aug 18];258(11):2441–7. https://pubmed.ncbi.nlm.nih.gov/32651628/
Mohammadpour M, Khoshtinat N, Khorrami-Nejad M. Comparison of visual, tomographic, and biomechanical outcomes of 360 degrees intracorneal ring implantation with and without corneal crosslinking for progressive keratoconus: a 5-year follow-up. Cornea. 2021 [cited 2024 Aug 18];40(3):303–10. https://pubmed.ncbi.nlm.nih.gov/33543874/
Benoist D’Azy C, Pereira B, Chiambaretta F, Dutheil F. Efficacy of different procedures of intra-corneal ring segment implantation in keratoconus: a systematic review and meta-analysis. Transl Vis Sci Technol. 2019 [cited 2024 Aug 18];8(3). https://pubmed.ncbi.nlm.nih.gov/31211003/
Coskunseven E, Jankov MR, Hafezi F, Atun S, Arslan E, Kymionis GD. Effect of treatment sequence in combined intrastromal corneal rings and corneal collagen crosslinking for keratoconus. J Cataract Refract Surg. 2009 [cited 2024 Aug 18];35(12):2084–91. https://pubmed.ncbi.nlm.nih.gov/19969212/
Legare ME, Iovieno A, Yeung SN, Lichtinger A, Kim P, Franzco et al. Intacs with or without same-day corneal collagen cross-linking to treat corneal ectasia. Can J Ophthalmol. 2013 [cited 2024 Aug 18];48(3):173–8. https://pubmed.ncbi.nlm.nih.gov/23769778/
Hersh PS, Issa R, Greenstein SA. Corneal crosslinking and intracorneal ring segments for keratoconus: A randomized study of concurrent versus sequential surgery. J Cataract Refract Surg. 2019 [cited 2024 Aug 18];45(6):830–9. https://pubmed.ncbi.nlm.nih.gov/30928252/
Ferrara G, Alfonso JF, lisa C, Poo A, Merayo-Lloves J. Classification of keratoconus according with topographic astigmatism, coma and type of ectasia. Invest Ophthalmol Vis Sci. 2011;52(14):1081–1081.
Gomes JAP, Tan D, Rapuano CJ, Belin MW, Ambrósio R, Guell JL et al. Global consensus on keratoconus and ectatic diseases. Cornea. 2015 [cited 2024 Aug 18];34(4):359–69. https://pubmed.ncbi.nlm.nih.gov/25738235/
Zadnik K, Barr JT, Edrington TB, Everett DF, Jameson M, Mcmahon TT, et al. Baseline findings in the collaborative longitudinal evaluation of keratoconus (CLEK) study. Invest Ophthalmol Vis Sci. 1998;39(13):2537–46.
pubmed: 9856763
Price LD, Larkin DFP. Diagnosis and management of keratoconus in the paediatric age group: a review of current evidence. Eye (Lond). 2023 [cited 2024 Aug 18];37(18):3718–24. https://pubmed.ncbi.nlm.nih.gov/37280353/
Al-Mohaimeed MM. Combined corneal CXL and photorefractive keratectomy for treatment of keratoconus: a review. Int J Ophthalmol. 2019 [cited 2024 Jul 24];12(12):1929–38. https://pubmed.ncbi.nlm.nih.gov/31850179/
Zhu AY, Jun AS, Soiberman US. Combined protocols for corneal collagen cross-linking with photorefractive surgery for refractive management of keratoconus: update on techniques and review of literature. Ophthalmol Ther. 2019 [cited 2024 Aug 18];8(Suppl 1):15–31. https://pubmed.ncbi.nlm.nih.gov/31605317/
Torquetti L, Ferrara G, Ferrara P. Predictors of clinical outcomes after intrastromal corneal ring segments implantation. Int J Keratoco Ectatic Corneal Dis. 2012;1(1):26–30.
doi: 10.5005/jp-journals-10025-1005
Zare M, Mehrjardi HZ, Afarideh M, Bahrmandy H, Mohammadi SF. Visual, keratometric and corneal biomechanical changes after intacs sk implantation for moderate to severe keratoconus. J Ophthalmic Vis Res. 2016 [cited 2024 Aug 18];11(1):17–25. https://pubmed.ncbi.nlm.nih.gov/27195080/
Berar OV, Rotenberg M, Berger Y, Matani A, Avni-Zauberman N, Barequet IS. Safety and efficacy of repeated corneal collagen crosslinking in progressive keratoconus. Cornea. 2023 [cited 2024 Aug 19];42(4):423–8. https://pubmed.ncbi.nlm.nih.gov/36455071/
Vega-Estrada A, Alió JL, Plaza-Puche AB. Keratoconus progression after intrastromal corneal ring segment implantation in young patients: five-year follow-up. J Cataract Refract Surg. 2015 [cited 2024 Aug 19];41(6):1145–52. https://pubmed.ncbi.nlm.nih.gov/26189375/
Xanthopoulou K, Milioti G, Daas L, Munteanu C, Seitz B, Flockerzi E. Accelerated corneal crosslinking causes pseudoprogression in keratoconus within the first 6 weeks without affecting posterior corneal curvature. Eur J Ophthalmol. 2022 [cited 2024 Aug 19];32(5):2565–76. https://pubmed.ncbi.nlm.nih.gov/35535408/
Mazzotta C, Hafezi F, Kymionis G, Caragiuli S, Jacob S, Traversi C et al. In vivo confocal microscopy after corneal collagen crosslinking. Ocul Surf. 2015 [cited 2024 Aug 19];13(4):298–314. https://pubmed.ncbi.nlm.nih.gov/26142059/
El-Raggal TM. Sequential versus concurrent KERARINGS insertion and corneal collagen cross-linking for keratoconus. Br J Ophthalmol. 2011 [cited 2024 Aug 19];95(1):37–41. https://pubmed.ncbi.nlm.nih.gov/20584709/
Liu XL, Li PH, Fournie P, Malecaze F. Investigation of the efficiency of intrastromal ring segments with cross-linking using different sequence and timing for keratoconus. Int J Ophthalmol. 2015 [cited 2024 Aug 19];8(4):703–8. https://pubmed.ncbi.nlm.nih.gov/26309866/
El-Massry A, Rashid K, Saad S, Osman I. One-year outcomes of intracorneal ring-segment insertion assisted by femtosecond laser simultaneously performed with corneal collagen cross-linking for treatment of keratoconus. Clin Ophthalmol. 2021 [cited 2024 Aug 19];15:4447–53. https://pubmed.ncbi.nlm.nih.gov/34815661/
Henriquez MA, Izquierdo L, Bernilla C, McCarthy M. Corneal collagen cross-linking before ferrara intrastromal corneal ring implantation for the treatment of progressive keratoconus. Cornea. 2012 [cited 2024 Aug 19];31(7):740–5. https://pubmed.ncbi.nlm.nih.gov/22531433/
Da Candelaria Renesto A, Melo LAS, De Filippi Sartori M, Campos M. Sequential topical riboflavin with or without ultraviolet a radiation with delayed intracorneal ring segment insertion for keratoconus. Am J Ophthalmol. 2012 [cited 2024 Aug 19];153(5). https://pubmed.ncbi.nlm.nih.gov/22265143/
Nguyen N, Gelles JD, Greenstein SA, Hersh PS. Incidence and associations of intracorneal ring segment explantation. J Cataract Refract Surg. 2019 [cited 2024 Aug 19];45(2):153–8. https://pubmed.ncbi.nlm.nih.gov/30509748/
Monteiro T, Alfonso JF, Franqueira N, Faria-Correia F, Ambrósio R, Madrid-Costa D. Predictability of tunnel depth for intrastromal corneal ring segments implantation between manual and femtosecond laser techniques. J Refract Surg. 2018 [cited 2024 Aug 19];34(3):188–94. https://pubmed.ncbi.nlm.nih.gov/29522229/