Self-assembly antimicrobial peptide for treatment of multidrug-resistant bacterial infection.
Animals
Drug Resistance, Multiple, Bacterial
/ drug effects
Mice
Microbial Sensitivity Tests
Female
Anti-Bacterial Agents
/ pharmacology
Antimicrobial Peptides
/ chemistry
Escherichia coli
/ drug effects
Staphylococcus aureus
/ drug effects
Mastitis
/ drug therapy
Nanofibers
/ chemistry
Nanoparticles
/ chemistry
Mice, Inbred BALB C
Humans
Antimicrobial peptide N6
Bacterial-capture
Bovine mastitis
Nanoparticles and nanofibers
Self-assembly
Stability
Journal
Journal of nanobiotechnology
ISSN: 1477-3155
Titre abrégé: J Nanobiotechnology
Pays: England
ID NLM: 101152208
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
15
05
2024
accepted:
02
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
The wide-spreading of multidrug resistance poses a significant threat to human and animal health. Although antimicrobial peptides (AMPs) show great potential application, their instability has severely limited their clinical application. Here, self-assembled AMPs composed of multiple modules based on the principle of associating natural marine peptide N6 with ß-sheet-forming peptide were designed. It is noteworthy that one of the designed peptides, FFN could self-assemble into nanoparticles at 35.46 µM and achieve a dynamic transformation from nanoparticles to nanofibers in the presence of bacteria, resulting in a significant increase in stability in trypsin and tissues by 1.72-57.5 times compared to that of N6. Additionally, FFN exhibits a broad spectrum of antibacterial activity against multidrug-resistant (MDR) gram-positive (G
Identifiants
pubmed: 39478570
doi: 10.1186/s12951-024-02896-5
pii: 10.1186/s12951-024-02896-5
doi:
Substances chimiques
Anti-Bacterial Agents
0
Antimicrobial Peptides
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
668Subventions
Organisme : National Key Research and Development Plan - High Expression of Thiopeptides and their Analogs
ID : 2022YFC2105000-03, 20222026
Organisme : National Natural Science Foundation of China
ID : 31872393
Organisme : The Innovation Program of Agricultural Science and Technology (ASTIP) in CAAS
ID : CAAS-ASTIP-2017-FRI-02
Organisme : The key projects of the Innovation Program of Agricultural Science and Technology (ASTIP) in CAAS
ID : CAAS-ZDRW202111 and Grant No. CAAS-ZDXT 201808
Informations de copyright
© 2024. The Author(s).
Références
Holmes AH, Moore LS, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet. 2016;387(10014):17687. https://doi.org/10.1016/S0140-6736(15)00473-0 .
doi: 10.1016/S0140-6736(15)00473-0
pubmed: 26603922
Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):62955. https://doi.org/10.1016/S0140-6736(21)02724-0 .
doi: 10.1016/S0140-6736(21)02724-0
Molineri AI, Camussone C, Zbrun MV, Suárez Archilla G, Cristiani M, Neder V, et al. Antimicrobial resistance of Staphylococcus aureus isolated from bovine mastitis: systematic review and meta-analysis. Prev Vet Med. 2021;188: 105261. https://doi.org/10.1016/j.prevetmed.2021.105261 .
doi: 10.1016/j.prevetmed.2021.105261
pubmed: 33508662
Goulart DB, Mellata M. Escherichia coli mastitis in dairy cattle: etiology, diagnosis, and treatment challenges. Front Microbiol. 2022;13: 928346. https://doi.org/10.3389/fmicb.2022.928346 .
doi: 10.3389/fmicb.2022.928346
pubmed: 35875575
pmcid: 9301288
Zhang J, Jiang Y, Xia X, Wu J, Almeida R, Eda S, et al. An on-site, highly specific immunosensor for Escherichia coli detection in field milk samples from mastitis-affected dairy cattle. Biosens Bioelectron. 2020;165: 112366. https://doi.org/10.1016/j.bios.2020.112366 .
doi: 10.1016/j.bios.2020.112366
pubmed: 32729498
De Oliveira DMP, Forde BM, Kidd TJ, Harris PNA, Schembri MA, Beatson SA, et al. Antimicrobial resistance in ESKAPE pathogens. Clin Microbiol Rev. 2020;33(3):e00181-e219. https://doi.org/10.1128/CMR.00181-19 .
doi: 10.1128/CMR.00181-19
pubmed: 32404435
pmcid: 7227449
Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet DL, et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis. 2018;18(3):31827. https://doi.org/10.1016/S1473-3099(17)30753-3 .
doi: 10.1016/S1473-3099(17)30753-3
pubmed: 29276051
Zhang QY, Yan ZB, Meng YM, Hong XY, Shao G, Ma JJ, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential. Mil Med Res. 2021;8(1):48. https://doi.org/10.1186/s40779-021-00343-2 .
doi: 10.1186/s40779-021-00343-2
pubmed: 34496967
pmcid: 8425997
Jiang Y, Chen Y, Song Z, Tan Z, Cheng J. Recent advances in design of antimicrobial peptides and polypeptides toward clinical translation. Adv Drug Deliv Rev. 2021;170:26180. https://doi.org/10.1016/j.addr.2020.12.016 .
doi: 10.1016/j.addr.2020.12.016
pubmed: 33400958
Magana M, Pushpanathan M, Santos AL, Leanse L, Fernandez M, Ioannidis A, et al. The value of antimicrobial peptides in the age of resistance. Lancet Infect Dis. 2020;20(9):e21630. https://doi.org/10.1016/S1473-3099(20)30327-3 .
doi: 10.1016/S1473-3099(20)30327-3
pubmed: 32653070
Li S, Wang Y, Xue Z, Jia Y, Li R, He C, et al. The structure-mechanism relationship and mode of actions of antimicrobial peptides: a review. Trends Food Sci Tech. 2021;109:103. https://doi.org/10.1016/j.tifs.2021.01.005 .
doi: 10.1016/j.tifs.2021.01.005
Yan Y, Li Y, Zhang Z, Wang X, Niu Y, Zhang S, et al. Advances of peptides for antibacterial applications. Colloids Surf B Biointerfaces. 2021;202: 111682. https://doi.org/10.1016/j.colsurfb.2021.111682 .
doi: 10.1016/j.colsurfb.2021.111682
pubmed: 33714188
Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science. 2020. https://doi.org/10.1126/science.aau5480 .
doi: 10.1126/science.aau5480
pubmed: 32355003
pmcid: 8097767
Li B, Ouyang X, Liu Y, Ba Z, Yang Y, Zhang J, et al. Novel ß-hairpin antimicrobial peptide containing the -turn sequence of ß-NG- and the tryptophan zippers facilitate self-assembly into nanofibers, exhibiting excellent antimicrobial performance. J Med Chem. 2024;67(8):636583. https://doi.org/10.1021/acs.jmedchem.3c02339 .
doi: 10.1021/acs.jmedchem.3c02339
pubmed: 38436574
Xuan J, Feng W, Wang J, Wang R, Zhang B, Bo L, et al. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist Updat. 2023;68: 100954. https://doi.org/10.1016/j.drup.2023.100954 .
doi: 10.1016/j.drup.2023.100954
pubmed: 36905712
Carratalá JV, Serna N, Villaverde A, Vázquez E, Ferrer-Miralles N. Nanostructured antimicrobial peptides: the last push towards clinics. Biotechnol Adv. 2020;44: 107603. https://doi.org/10.1016/j.biotechadv.2020.107603 .
doi: 10.1016/j.biotechadv.2020.107603
pubmed: 32738381
Dzuvor CKO. Toward clinical applications: transforming nonantibiotic antibacterials into effective next-generation supramolecular therapeutics. ACS Nano. 2024;18(4):256477. https://doi.org/10.1021/acsnano.3c11045 .
doi: 10.1021/acsnano.3c11045
pubmed: 38227832
Wang C, Hong T, Cui P, Wang J, Xia J. Antimicrobial peptides towards clinical application: delivery and formulation. Adv Drug Deliv Rev. 2021;175: 113818. https://doi.org/10.1016/j.addr.2021.05.028 .
doi: 10.1016/j.addr.2021.05.028
pubmed: 34090965
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: design, self-assembly, modulation, and biomedical applications. Bioact Mater. 2024;35:181207. https://doi.org/10.1016/j.bioactmat.2024.01.023 .
doi: 10.1016/j.bioactmat.2024.01.023
pubmed: 38327824
pmcid: 10847779
Batra R, Loeffler TD, Chan H, Srinivasan S, Cui H, Korendovych IV, Nanda V, Palmer LC, Solomon LA, Fry HC, Sankaranarayanan SKRS. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat Chem. 2022;14(12):142735. https://doi.org/10.1038/s41557-022-01055-3 .
doi: 10.1038/s41557-022-01055-3
pubmed: 36316409
pmcid: 9844539
Abbas M, Ovais M, Atiq A, Ansari T, Xing R, Spruijt E, et al. Tailoring supramolecular short peptide nanomaterials for antibacterial applications. Coord Chem Rev. 2022;460: 214481. https://doi.org/10.1016/j.ccr.2022.214481 .
doi: 10.1016/j.ccr.2022.214481
Mamuti M, Zheng R, An HW, Wang H. In vivo self-assembled nanomedicine. Nano Today. 2021;36: 101036. https://doi.org/10.1016/j.nantod.2020.101036 .
doi: 10.1016/j.nantod.2020.101036
Qi GB, Zhang D, Liu FH, Qiao ZY, Wang H. An, On-site transformation strategy for treatment of bacterial infection. Adv Mater. 2017;29(36):1703461. https://doi.org/10.1002/adma.201703461 .
doi: 10.1002/adma.201703461
Fan Y, Li XD, He PP, Hu XX, Zhang K, Fan JQ, et al. A biomimetic peptide recognizes and traps bacteria in vivo as human defensin-6. Sci Adv. 2020. https://doi.org/10.1126/sciadv.aaz4767 .
doi: 10.1126/sciadv.aaz4767
pubmed: 33328226
pmcid: 7744078
Mo X, Zhang Z, Song J, Wang Y, Yu Z. Self-assembly of peptides in living cells for disease theranostics. J Mater Chem B. 2024;12(18):4289306. https://doi.org/10.1039/d4tb00365a .
doi: 10.1039/d4tb00365a
pubmed: 38595070
Li T, Yang N, Teng D, Mao R, Hao Y, Wang X, et al. C-terminal mini-PEGylation of a marine peptide N6 had potent antibacterial and anti-inflammatory properties against Escherichia coli and Salmonella strains in vitro and in vivo. BMC Microbiol. 2022;22(1):128. https://doi.org/10.1186/s12866-022-02534-w .
doi: 10.1186/s12866-022-02534-w
pubmed: 35549900
pmcid: 9097129
Chen L, Liang JF. Peptide fibrils with altered stability, activity, and cell selectivity. Biomacromol. 2013;14(7):232631. https://doi.org/10.1021/bm400618m .
doi: 10.1021/bm400618m
Han Z, Feng D, Wang W, Wang Y, Cheng M, Yang H, et al. Influence of fatty acid modification on the anticancer activity of the antimicrobial peptide Figainin 1. ACS Omega. 2023;8(44):4187684. https://doi.org/10.1021/acsomega.3c06806 .
doi: 10.1021/acsomega.3c06806
pubmed: 37970064
pmcid: 10633881
Li LL, Qiao ZY, Wang L, Wang H. Programmable construction of peptide-based materials in living subjects: from modular design and morphological control to theranostics. Adv Mater. 2019;31(45): e1804971. https://doi.org/10.1002/adma.201804971 .
doi: 10.1002/adma.201804971
pubmed: 30450607
Debnath S, Shome A, Das D, Das PK. Hydrogelation through self-assembly of fmoc-peptide functionalized cationic amphiphiles: potent antibacterial agent. J Phys Chem B. 2010;114(13):440715. https://doi.org/10.1021/jp909520w .
doi: 10.1021/jp909520w
pubmed: 20297770
Yang PP, Luo Q, Qi GB, Gao YJ, Li BN, Zhang JP, et al. Host materials transformable in tumor microenvironment for homing theranostics. Adv Mater. 2017;29(15):1605869. https://doi.org/10.1002/adma.201605869 .
doi: 10.1002/adma.201605869
Sha XL, Lv GT, Chen QH, Cui X, Wang L, Cui X. A peptide selectively recognizes gram-negative bacteria and forms a bacterial extracellular trap (BET) through interfacial self-assembly. J Mater Chem B. 2024;12(15):367685. https://doi.org/10.1039/d3tb02559d .
doi: 10.1039/d3tb02559d
pubmed: 38530749
Wang J, Liu K, Xing R, Yan X. Peptide self-assembly: thermodynamics and kinetics. Chem Soc Rev. 2016;45(20):5589604. https://doi.org/10.1039/c6cs00176a .
doi: 10.1039/c6cs00176a
pubmed: 27487936
Tram N, Xu J, Mukherjee D, Obanel AE, Mayandi V, Selvarajan V, et al. Bacteria-responsive self-assembly of antimicrobial peptide nanonets for trap-and-kill of antibiotic-resistant strains. Adv Funct Mater. 2022;33:2210858. https://doi.org/10.1002/adfm.202210858 .
doi: 10.1002/adfm.202210858
Schnaider L, Brahmachari S, Schmidt NW, Mensa B, Shaham-Niv S, Bychenko D, et al. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat Commun. 2017;8(1):1365. https://doi.org/10.1038/s41467-017-01447-x .
doi: 10.1038/s41467-017-01447-x
pubmed: 29118336
pmcid: 5678095
Li R, Gao H, Zhang C, Li D, Zhang L, Huang L, et al. Influence of acetylation on the mechanism of action of antimicrobial peptide L163. Int J Pept Res Ther. 2022;28(3):78. https://doi.org/10.1007/s10989-022-10387-0 .
doi: 10.1007/s10989-022-10387-0
Wang Z, Liu X, Teng Da, Mao R, Hao Y, Yang N, et al. Development of chimeric peptides to facilitate the neutralisation of lipopolysaccharides during bactericidal targeting of multidrug-resistant Escherichia coli. Commun Biol. 2020;3(1):41. https://doi.org/10.1038/s42003-020-0761-3 .
doi: 10.1038/s42003-020-0761-3
pubmed: 31974490
pmcid: 6978316
Tan P, Tang Q, Xu S, Zhang Y, Fu H, Ma X. Designing self-assembling chimeric peptide nanoparticles with high stability for combating piglet bacterial infections. Adv Sci. 2022;9(14):2105955. https://doi.org/10.1002/advs.202105955 .
doi: 10.1002/advs.202105955
Häffner SM, Malmsten M. Influence of self-assembly on the performance of antimicrobial peptides. Curr Opin in Colloid In. 2018;38:56. https://doi.org/10.1016/j.cocis.2018.09.002 .
doi: 10.1016/j.cocis.2018.09.002
Yang Y, Cai Z, Huang Z, Tang X, Zhang X. Antimicrobial cationic polymers: from structural design to functional control. Polym J. 2017;50:33. https://doi.org/10.1038/pj.2017.72 .
doi: 10.1038/pj.2017.72.
Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol.2016;14(5):320. https://www.nature.com/articles/nrmicro.2016.34
doi: 10.1038/nrmicro.2016.34
pubmed: 27080241
Cantón R, Morosini MI. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol Rev. 2011;35(5):977. https://doi.org/10.1111/j.1574-6976.2011.00295.x .
doi: 10.1111/j.1574-6976.2011.00295.x
pubmed: 21722146
Srimani JK, Huang S, Lopatkin AJ, You L. Drug detoxification dynamics explain the postantibiotic effect. Mol Syst Biol. 2017;13(10):948. https://doi.org/10.15252/msb.20177723 .
doi: 10.15252/msb.20177723
pubmed: 29061668
pmcid: 5658699
Abel Zur Wiesch P, Abel S, Gkotzis S, Ocampo P, Engelstädter J, Hinkley T, et al. Classic reaction kinetics can explain complex patterns of antibiotic action. Sci Transl Med. 2015. https://doi.org/10.1126/scitranslmed.aaa8760 .
doi: 10.1126/scitranslmed.aaa8760
pubmed: 25972005
Phuong PT, Oliver S, He J, Wong EHH, Mathers RT, Boyer C. Effect of hydrophobic groups on antimicrobial and hemolytic activity: developing a predictive tool for ternary antimicrobial polymers. Biomacromol. 2020;21(12):524155. https://doi.org/10.1021/acs.biomac.0c01320 .
doi: 10.1021/acs.biomac.0c01320
Cao F, Ma G, Song M, Zhu G, Mei L, Qin Q. Evaluating the effects of hydrophobic and cationic residues on antimicrobial peptide self-assembly. Soft Matter. 2021;17(16):444551. https://doi.org/10.1039/d1sm00096a .
doi: 10.1039/d1sm00096a
pubmed: 33908584
Dou X, Zhu X, Wang J, Dong N, Shan A. Novel design of heptad amphiphiles to enhance cell selectivity, salt resistance, antibiofilm properties and their membrane-disruptive mechanism. J Med Chem. 2017;60(6):225770. https://doi.org/10.1021/acs.jmedchem.6b01457 .
doi: 10.1021/acs.jmedchem.6b01457
pubmed: 28230992
Zuroff L, Daley D, Black KL, Koronyo-Hamaoui M. Clearance of cerebral Aß in Alzheimers disease: reassessing the role of microglia and monocytes. Cell Mol Life Sci. 2017;74(12):2167201. https://doi.org/10.1007/s00018-017-2463-7 .
doi: 10.1007/s00018-017-2463-7
pubmed: 28197669
pmcid: 5425508
Tan P, Fu H, Ma X. Design, optimization, and nanotechnology of antimicrobial peptides: from exploration to applications. Nano Today. 2021;39: 101229. https://doi.org/10.1016/j.nantod.2021.101229 .
doi: 10.1016/j.nantod.2021.101229
El Battioui K, Chakraborty S, Wacha A, Molnár D, Quemé-Peña M, Szigyártó IC, et al. In situ captured antibacterial action of membrane-incising peptide lamellae. Nat Commun. 2024;15(1):3424. https://doi.org/10.1038/s41467-024-47708-4 .
doi: 10.1038/s41467-024-47708-4
pubmed: 38654023
pmcid: 11039730
Li Q, Li J, Yu W, Wang Z, Li J, Feng X, et al. De novo design of a pH-triggered self-assembled -hairpin nanopeptide with the dual biological functions for antibacterial and entrapment. J Nanobiotechnology. 2021;19(1):183. https://doi.org/10.1186/s12951-021-00927-z .
doi: 10.1186/s12951-021-00927-z
pubmed: 34127004
pmcid: 8201815
Liu J, Zhang X, Zou P, Yao J, Liu L, Cai Y, et al. Peptide-based nano-antibiotic transformers with antibiotic adjuvant effect for multidrug resistant bacterial pneumonia therapy. Nano Today. 2022. https://doi.org/10.1016/j.nantod.2022.101505 .
doi: 10.1016/j.nantod.2022.101505
pubmed: 37034182
pmcid: 10035358
Tan P, Wu C, Tang Q, Wang T, Zhou C, Ding Y, et al. pH-triggered size-transformable and bioactivity-switchable self-assembling chimeric peptide nanoassemblies for combating drug-resistant bacteria and biofilms. Adv Mater. 2023;35(29): e2210766. https://doi.org/10.1002/adma.202210766 .
doi: 10.1002/adma.202210766
pubmed: 37143434
Fang Y, Zhu Y, Li L, Lai Z, Dong N, Shan A. Biomaterial-interrelated bacterial sweeper: simplified self-assembled octapeptides with double-layered trp zipper induces membrane destabilization and bacterial apoptosis-like death. Small Methods. 2021;5(12): e2101304. https://doi.org/10.1002/smtd.202101304 .
doi: 10.1002/smtd.202101304
pubmed: 34928043
Wenzel M, Vischer NOE, Strahl H, Hamoen HLW, et al. Assessing membrane fluidity and visualizing fluid membrane domains in bacteria using fluorescent membrane dyes. Bio Protoc. 2018;8(20): e3063. https://doi.org/10.21769/bioprotoc.3063 .
doi: 10.21769/bioprotoc.3063
pubmed: 34532528
pmcid: 8342135
Chu H, Pazgier M, Jung G, Nuccio SP, Castillo PA, de Jong MF, et al. Human -defensin 6 promotes mucosal innate immunity through self-assembled peptide nanonets. Science. 2012;337(6093):47781. https://doi.org/10.1126/science.1218831 .
doi: 10.1126/science.1218831
pubmed: 22722251
pmcid: 4332406
Yang H, Wang J, Wang X, Wang S, Xu J, Shan Q, et al. Nanofiber peptides for bacterial trapping: a novel approach to antibiotic alternatives in wound infections. Adv Healthc Mater. 2024;12: e2304657. https://doi.org/10.1002/adhm.202304657 .
doi: 10.1002/adhm.202304657
Parkin HC, Street STG, Gowen B, Da-Silva-Correa LH, Hof R, Buckley HL, et al. Mechanism of action and design of potent antibacterial block copolymer nanoparticles. J Am Chem Soc. 2024;146(8):512841. https://doi.org/10.1021/jacs.3c09033 .
doi: 10.1021/jacs.3c09033
pubmed: 38356186
Yang X, Cheng X, Tang Y, Qiu X, Wang Y, Kang H, et al. Bacterial endotoxin activates the coagulation cascade through gasdermin D-dependent phosphatidylserine exposure. Immunity. 2019;51(6):983-996.e6. https://doi.org/10.1016/j.immuni.2019.11.005 .
doi: 10.1016/j.immuni.2019.11.005
pubmed: 31836429
Johnzon CF, Dahlberg J, Gustafson AM, Waern I, Moazzami AA, Östensson K, et al. The effect of lipopolysaccharide-induced experimental bovine mastitis on clinical parameters, inflammatory markers, and the metabolome: a kinetic approach. Front Immunol. 2018;9:1487. https://doi.org/10.3389/fimmu.2018.01487 .
doi: 10.3389/fimmu.2018.01487
pubmed: 29988549
pmcid: 6026673
Hu X, Guo J, Zhao C, Jiang P, Maimai T, Yanyi L, et al. The gut microbiota contributes to the development of Staphylococcus aureus-induced mastitis in mice. ISME J. 2020;14(7):1897910. https://doi.org/10.1038/s41396-020-0651-1 .
doi: 10.1038/s41396-020-0651-1
pubmed: 32341472
pmcid: 7305118
Wellnitz O, Zbinden C, Huang X, Bruckmaier RM. Short communication: Differential loss of bovine mammary epithelial barrier integrity in response to lipopolysaccharide and lipoteichoic acid. J Dairy Sci. 2016;99(6):48516. https://doi.org/10.3168/jds.2016-10927 .
doi: 10.3168/jds.2016-10927
pubmed: 27060811
Xu T, Dong Z, Wang X, Qi S, Li X, Cheng R, et al. IL-1 induces increased tight junction permeability in bovine mammary epithelial cells via the IL-1-ERK1/2-MLCK axis upon blood-milk barrier damage. J Cell Biochem. 2018;119(11):902841. https://doi.org/10.1002/jcb.27160 .
doi: 10.1002/jcb.27160
pubmed: 30011095
Günther J, Petzl W, Bauer I, Ponsuksili S, Zerbe H, Schuberth HJ, et al. Differentiating Staphylococcus aureus from Escherichia coli mastitis: S. aureus triggers unbalanced immune-dampening and host cell invasion immediately after udder infection. Sci Rep. 2017;7(1):4811. https://doi.org/10.1038/s41598-017-05107-4 .
doi: 10.1038/s41598-017-05107-4
pubmed: 28684793
pmcid: 5500526
Zou P, Liu J, Li X, Yaseen M, Yao J, Liu L, et al. A membrane curvature modulated lipopeptide to broadly combat multidrug-resistant bacterial pneumonia with low resistance risk. ACS Nano. 2022;16(12):20545. https://doi.org/10.1021/acsnano.2c07251 .
doi: 10.1021/acsnano.2c07251
pubmed: 36375012
Song M, Liu Y, Huang X, Ding S, Wang Y, Shen J, et al. A broad-spectrum antibiotic adjuvant reverses multidrug-resistant gram-negative pathogens. Nat Microbiol. 2020;5(8):104050. https://doi.org/10.1038/s41564-020-0723-z .
doi: 10.1038/s41564-020-0723-z
pubmed: 32424338
Ma Z, Liu X, Nie J, Zhao H, Li W. Nano-antimicrobial peptides based on constitutional isomerism-dictated self-assembly. Biomacromol. 2022;23(3):130213. https://doi.org/10.1021/acs.biomac.1c01532 .
doi: 10.1021/acs.biomac.1c01532
Wang Z, Teng D, Mao R, Hao Y, Yang N, Wang X, et al. A cleavable chimeric peptide with targeting and killing domains enhances LPS neutralization and antibacterial properties against multidrug resistant E. coli. Commun Biol. 2023;6(1):1170. https://doi.org/10.1038/s42003-023-05528-0 .
doi: 10.1038/s42003-023-05528-0
pubmed: 37973936
pmcid: 10654507
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):5839. https://doi.org/10.1038/s41586-021-03819-2 .
doi: 10.1038/s41586-021-03819-2
pubmed: 34265844
Feng Y, Yan Y, He J, Tao H, Wu Q, et al. Docking and scoring for nucleic acid-ligand interactions: principles and current status. Drug Discov Today. 2022;27(3):83847. https://doi.org/10.1016/j.drudis.2021.10.013 .
doi: 10.1016/j.drudis.2021.10.013
pubmed: 34718205
Feng Y, Zhang K, Wu Q, Huang SY. NLDock: a fast nucleic acid-ligand docking algorithm for modeling RNA/DNA-ligand complexes. J Chem Inf Model. 2021;61(9):477182. https://doi.org/10.1021/acs.jcim.1c00341 .
doi: 10.1021/acs.jcim.1c00341
pubmed: 34468128
Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J. Pharmacokinetics and pharmacodynamics of antibacterial peptide NZX in Staphylococcus aureus mastitis mouse model. Appl Microbiol Biotechnol. 2024;108(1):260. https://doi.org/10.1007/s00253-024-13101-w .
doi: 10.1007/s00253-024-13101-w
pubmed: 38472422