A preliminary study of gene expression changes in Koalas Infected with Koala Retrovirus (KoRV) and identification of potential biomarkers for KoRV pathogenesis.
Biomarkers
Differentially expressed gene
Koala retrovirus
PBMCs
RNA-seq
Journal
BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759
Informations de publication
Date de publication:
30 Oct 2024
30 Oct 2024
Historique:
received:
01
05
2024
accepted:
24
10
2024
medline:
31
10
2024
pubmed:
31
10
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-A to I and K to M) and causes multiple disease phenotypes, including carcinomas and immunosuppression. However, the direct association between the different KoRV subtypes and carcinogenesis remains unknown. Differentially expressed gene (DEG) analysis of peripheral blood mononuclear cells (PBMCs) of koalas carrying both endogenous (KoRV-A) and exogenous (KoRV-A, B, and C) subtypes was performed using a high-throughput RNA-seq approach. PBMCs were obtained from three healthy koalas: one infected with endogenous (KoRV-A; Group I) and two infected with exogenous (KoRV-B and/or KoRV-C; Group II) subtypes. Additionally, spleen samples (n = 6) from six KoRV-infected deceased koalas (K1- K6) and blood samples (n = 1) from a live koala (K7) were collected and examined to validate the findings. All koalas were positive for the endogenous KoRV-A subtype, and eight koalas were positive for KoRV-B and/or KoRV-C. Transcription of KoRV gag, pol, and env genes was detected in all koalas. Upregulation of cytokine and immunosuppressive genes was observed in koalas infected with KoRV-B or KoRV-B and -C subtypes, compared to koalas infected with only KoRV-A. We found 550 DEG signatures with significant (absolute p < 0.05, and absolute log Thus, it can be concluded that multiple KoRV subtypes affect disease progression in koalas and that the predicted hub genes could be promising prognostic biomarkers for pathogenesis.
Sections du résumé
BACKGROUND
BACKGROUND
Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-A to I and K to M) and causes multiple disease phenotypes, including carcinomas and immunosuppression. However, the direct association between the different KoRV subtypes and carcinogenesis remains unknown. Differentially expressed gene (DEG) analysis of peripheral blood mononuclear cells (PBMCs) of koalas carrying both endogenous (KoRV-A) and exogenous (KoRV-A, B, and C) subtypes was performed using a high-throughput RNA-seq approach. PBMCs were obtained from three healthy koalas: one infected with endogenous (KoRV-A; Group I) and two infected with exogenous (KoRV-B and/or KoRV-C; Group II) subtypes. Additionally, spleen samples (n = 6) from six KoRV-infected deceased koalas (K1- K6) and blood samples (n = 1) from a live koala (K7) were collected and examined to validate the findings.
RESULTS
RESULTS
All koalas were positive for the endogenous KoRV-A subtype, and eight koalas were positive for KoRV-B and/or KoRV-C. Transcription of KoRV gag, pol, and env genes was detected in all koalas. Upregulation of cytokine and immunosuppressive genes was observed in koalas infected with KoRV-B or KoRV-B and -C subtypes, compared to koalas infected with only KoRV-A. We found 550 DEG signatures with significant (absolute p < 0.05, and absolute log
CONCLUSION
CONCLUSIONS
Thus, it can be concluded that multiple KoRV subtypes affect disease progression in koalas and that the predicted hub genes could be promising prognostic biomarkers for pathogenesis.
Identifiants
pubmed: 39478576
doi: 10.1186/s12917-024-04357-5
pii: 10.1186/s12917-024-04357-5
doi:
Substances chimiques
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
496Informations de copyright
© 2024. The Author(s).
Références
Xu W, Stadler CK, Gorman K, Jensen N, Kim D, et al. An exogenous retrovirus isolated from koalas with malignant neoplasias in a US zoo. Proc Natl Acad Sci. 2013;110:11547–52.
pubmed: 23798387
doi: 10.1073/pnas.1304704110
Tarlinton R, Meers J, Young P. Endogenous retroviruses: biology and evolution of the endogenous koala retrovirus. Cell Mol Life Sci. 2008;65:3413–21.
pubmed: 18818870
doi: 10.1007/s00018-008-8499-y
Waugh CA, Hanger J, Loader J, King A, Hobbs M, et al. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci Rep. 2017;7:134.
pubmed: 28273935
doi: 10.1038/s41598-017-00137-4
Blyton MD, Pyne M, Young P, Chappell K. Koala retrovirus load and non-A subtypes are associated with secondary disease among wild northern koalas. PLoS Pathog. 2022;18: e1010513.
pubmed: 35588407
doi: 10.1371/journal.ppat.1010513
Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol. 2000;74:4264–72.
pubmed: 10756041
doi: 10.1128/JVI.74.9.4264-4272.2000
Tarlinton RE, Meers J, Young PR. Retroviral invasion of the koala genome. Nature. 2006;442:79–81.
pubmed: 16823453
doi: 10.1038/nature04841
Hashem MA, Maetani F, Kayesh MEH, Eiei T, Mochizuki K, et al. Transmission of koala retrovirus from parent koalas to a joey in a Japanese zoo. J Virol. 2020;94:e00019-00020.
pubmed: 32188730
doi: 10.1128/JVI.00019-20
Shojima T, Yoshikawa R, Hoshino S, Shimode S, Nakagawa S, et al. Identification of a novel subgroup of koala retrovirus from koalas in Japanese zoos. J Virol. 2013;87:9943–8.
pubmed: 23824806
doi: 10.1128/JVI.01385-13
Xu W, Gorman K, Santiago JC, Kluska K, Eiden MV. Genetic diversity of koala retroviral envelopes. Viruses. 2015;7:1258–70.
pubmed: 25789509
doi: 10.3390/v7031258
Chappell K, Brealey J, Amarilla A, Watterson D, Hulse L, et al. Phylogenetic diversity of koala retrovirus within a wild koala population. J Virol. 2017;91:e01820–e01816.
pubmed: 27881645
pmcid: 5244342
doi: 10.1128/JVI.01820-16
Hobbs M, King A, Salinas R, Chen Z, Tsangaras K, et al. Long-read genome sequence assembly provides insight into ongoing retroviral invasion of the koala germline. Sci Rep. 2017;7:15838.
pubmed: 29158564
pmcid: 5696478
doi: 10.1038/s41598-017-16171-1
Zheng H, Pan Y, Tang S, Pye GW, Stadler CK, et al. Koala retrovirus diversity, transmissibility, and disease associations. Retrovirology. 2020;17:1–23.
doi: 10.1186/s12977-020-00541-1
Quigley BL, Timms P. Helping koalas battle disease–Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev. 2020;44:583–605.
pubmed: 32556174
pmcid: 8600735
doi: 10.1093/femsre/fuaa024
Hashem MA, Kayesh MEH, Maetani F, Eiei T, Mochizuki K, et al. Koala retrovirus (KoRV) subtypes and their impact on captive koala (Phascolarctos cinereus) health. Arch Virol. 2021;166:1893–901.
Quigley BL, Ong VA, Hanger J, Timms P. Molecular dynamics and mode of transmission of koala retrovirus as it invades and spreads through a wild Queensland koala population. J Virol. 2018;92:e01871–e01817.
pubmed: 29237837
pmcid: 5809739
doi: 10.1128/JVI.01871-17
MacLean D, Jones JD, Studholme DJ. Application of’next-generation’sequencing technologies to microbial genetics. Nat Rev Microbiol. 2009;7:96–7.
doi: 10.1038/nrmicro2088
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–8.
pubmed: 18165802
doi: 10.1038/nmeth1156
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
pubmed: 19015660
pmcid: 2949280
doi: 10.1038/nrg2484
Ashrafi F, Nassiri M, Javadmanesh A, Rahimi H, Rezaee SA. Epigenetics evaluation of the oncogenic mechanisms of two closely related bovine and human deltaretroviruses: A system biology study. Microb Pathog. 2020;139: 103845.
pubmed: 31698053
doi: 10.1016/j.micpath.2019.103845
Cheng C, Wu X, Shen Y, Li Q. KIF14 and KIF23 promote cell proliferation and chemoresistance in HCC cells, and predict worse prognosis of patients with HCC. Cancer Manag Res. 2020;Volume 12:13241–57.
doi: 10.2147/CMAR.S285367
Wu Z, Song Y, Wu Y, Ge L, Liu Z, et al. Identification of KIF23 as a prognostic biomarker associated with progression of clear cell renal cell carcinoma. Front Cell Dev Biol 2022;10:839821. https://doi.org/10.3389/fcell.2022.839821 .
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509–17.
pubmed: 18550803
pmcid: 2527709
doi: 10.1101/gr.079558.108
Wilhelm BT, Landry J-R. RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods. 2009;48:249–57.
pubmed: 19336255
doi: 10.1016/j.ymeth.2009.03.016
Hoque MN, Sarkar M, Hasan M, Khan M, Hossain M, et al. Differential gene expression profiling reveals potential biomarkers and pharmacological compounds against SARS-CoV-2: Insights from machine learning and bioinformatics approaches. Frontiers in Immunology: 3875. 2022.
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, et al. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 2019;26(1627–1640): e1627.
doi: 10.1016/j.celrep.2019.01.041
Zamani-Ahmadmahmudi M, Najafi A, Nassiri S. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes. J Comp Pathol. 2015;152:119–30.
pubmed: 25678421
doi: 10.1016/j.jcpa.2014.11.008
Fu Y-P, Liang Y, Dai Y-T, Yang C-T, Duan M-Z, et al. De novo sequencing and transcriptome analysis of Pleurotus eryngii subsp. tuoliensis (Bailinggu) mycelia in response to cold stimulation. Molecules. 2016;21: 560.
pubmed: 27196889
pmcid: 6273410
doi: 10.3390/molecules21050560
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-like receptor and cytokine responses to infection with endogenous and exogenous Koala retrovirus, and vaccination as a control strategy. Curr Issues Mol Biol. 2021;43:52–64.
pubmed: 33946297
pmcid: 8928999
doi: 10.3390/cimb43010005
Kayesh MEH, Yamato O, Rahman MM, Hashem MA, Maetani F, et al. Molecular dynamics of koala retrovirus infection in captive koalas in Japan. Arch Virol. 2019;164:757–65.
Tang Y, Zhang Y, Hu X. Identification of potential hub genes related to diagnosis and prognosis of hepatitis B virus-related hepatocellular carcinoma via integrated bioinformatics analysis. BioMed Res Int. 2020;(1):4251761. https://doi.org/10.1155/2020/4251761 .
Ashrafi F, Ghezeldasht SA, Ghobadi MZ. Identification of joint gene players implicated in the pathogenesis of HTLV-1 and BLV through a comprehensive system biology analysis. Microb Pathog. 2021;160:105153.
Hashem MA, Kayesh MEH, Yamato O, Maetani F, Eiei T, et al. Coinfection with koala retrovirus subtypes A and B and its impact on captive koalas in Japanese zoos. Arch Virol. 2019;164:2735–45.
Batman U, Deretic J, Firat-Karalar EN. The ciliopathy protein CCDC66 controls mitotic progression and cytokinesis by promoting microtubule nucleation and organization. PLoS Biol. 2022;20: e3001708.
pubmed: 35849559
doi: 10.1371/journal.pbio.3001708
Gu P, Zhang M, Chen X, Du J, Chen L, et al. Prognostic value of cell division cycle-associated protein-3 in prostate cancer. Medicine 2023;102:36(e34655).
Watt, KEN, Macintosh J, Bernard G, Paul A. RNA polymerases I and III in development and disease. Semin Cell Dev Biol 2023;136:49–63.
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther. 2021;6:323.
pubmed: 34462428
doi: 10.1038/s41392-021-00728-8
Salmerón-Hernández Á, Noriega-Reyes MY, Jordan A, Baranda-Avila N, Langley E. BCAS2 enhances carcinogenic effects of estrogen receptor alpha in breast cancer cells. Int J Mol Sci. 2019;20:966.
pubmed: 30813351
doi: 10.3390/ijms20040966
Zhu LJ, Pan Y, Chen XY, Hou PF. BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation. Oncol Lett. 2020;19:3506–12.
pubmed: 32269624
Li Z, Yao Q, Zhao S, Wang Z, Li Y. Protein coding gene CRNKL1 as a potential prognostic biomarker in esophageal adenocarcinoma. Artif Intell Med. 2017;76:1–6.
pubmed: 28363284
doi: 10.1016/j.artmed.2017.01.002
Hu Y, Zheng M, Wang C, Wang S, Gou R, et al. Identification of KIF23 as a prognostic signature for ovarian cancer based on large-scale sampling and clinical validation. Am J Trans Research. 2020;12:4955.
Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21:317–37.
pubmed: 19246554
doi: 10.1093/intimm/dxp017
Liang W-T, Liu X-F, Huang H-B, Gao Z-M, Li K. Prognostic significance of KIF23 expression in gastric cancer. World J gastrointestinal oncology. 2020;12: 1104.
doi: 10.4251/wjgo.v12.i10.1104
Campbell SL, Wellen KE. Metabolic signaling to the nucleus in cancer. Mol Cell. 2018;71:398–408.
pubmed: 30075141
doi: 10.1016/j.molcel.2018.07.015
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, et al. Sex differences in cancer mechanisms. Biol Sex Differ. 2020;11:1–29.
doi: 10.1186/s13293-020-00291-x
Singh U, Hernandez KM, Aronow BJ, Wurtele ES. African Americans and European Americans exhibit distinct gene expression patterns across tissues and tumors associated with immunologic functions and environmental exposures. Sci Rep. 2021;11:9905.
pubmed: 33972602
doi: 10.1038/s41598-021-89224-1
Yamamoto R, Chung R, Vazquez JM, Sheng H, Steinberg PL, et al. Tissue-specific impacts of aging and genetics on gene expression patterns in humans. Nat Commun. 2022;13:5803.
pubmed: 36192477
doi: 10.1038/s41467-022-33509-0
Hoque MN, Istiaq A, Clement RA, Sultana M, Crandall KA, et al. Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep. 2019;9:1–14.
doi: 10.1038/s41598-019-49468-4
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404
doi: 10.1093/bioinformatics/btu170
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
pubmed: 25751142
doi: 10.1038/nmeth.3317
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
pubmed: 21572440
pmcid: 3571712
doi: 10.1038/nbt.1883
Fonseca NA, Marioni J, Brazma A. RNA-seq gene profiling-a systematic empirical comparison. PLoS ONE. 2014;9: e107026.
pubmed: 25268973
pmcid: 4182317
doi: 10.1371/journal.pone.0107026
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
pubmed: 24227677
doi: 10.1093/bioinformatics/btt656
Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp/cnb/csic/es/tools/venny/index/html .
Cv M, Huynen M, Jaeggi D, Schmidt S, Bork P, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.
doi: 10.1093/nar/gkg034
Wang J, Zhong J, Chen G, Li M, Wu F-x, et al. ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACM Trans Comput Biol Bioinf. 2014;12:815–22.
doi: 10.1109/TCBB.2014.2361348
Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics. 2010;26:2347–8.
pubmed: 20656902
pmcid: 2935447
doi: 10.1093/bioinformatics/btq430
Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:1–7.
doi: 10.1186/1471-2105-15-293
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75.
pubmed: 17576678
pmcid: 1933169
doi: 10.1093/nar/gkm415
Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023;224:iyad031.
pubmed: 36866529
pmcid: 10158837
doi: 10.1093/genetics/iyad031
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36:D480–4.
pubmed: 18077471
pmcid: 2238879
doi: 10.1093/nar/gkm882