A preliminary study of gene expression changes in Koalas Infected with Koala Retrovirus (KoRV) and identification of potential biomarkers for KoRV pathogenesis.


Journal

BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 01 05 2024
accepted: 24 10 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-A to I and K to M) and causes multiple disease phenotypes, including carcinomas and immunosuppression. However, the direct association between the different KoRV subtypes and carcinogenesis remains unknown. Differentially expressed gene (DEG) analysis of peripheral blood mononuclear cells (PBMCs) of koalas carrying both endogenous (KoRV-A) and exogenous (KoRV-A, B, and C) subtypes was performed using a high-throughput RNA-seq approach. PBMCs were obtained from three healthy koalas: one infected with endogenous (KoRV-A; Group I) and two infected with exogenous (KoRV-B and/or KoRV-C; Group II) subtypes. Additionally, spleen samples (n = 6) from six KoRV-infected deceased koalas (K1- K6) and blood samples (n = 1) from a live koala (K7) were collected and examined to validate the findings. All koalas were positive for the endogenous KoRV-A subtype, and eight koalas were positive for KoRV-B and/or KoRV-C. Transcription of KoRV gag, pol, and env genes was detected in all koalas. Upregulation of cytokine and immunosuppressive genes was observed in koalas infected with KoRV-B or KoRV-B and -C subtypes, compared to koalas infected with only KoRV-A. We found 550 DEG signatures with significant (absolute p < 0.05, and absolute log Thus, it can be concluded that multiple KoRV subtypes affect disease progression in koalas and that the predicted hub genes could be promising prognostic biomarkers for pathogenesis.

Sections du résumé

BACKGROUND BACKGROUND
Koala retrovirus (KoRV), a major pathogen of koalas, exists in both endogenous (KoRV-A) and exogenous forms (KoRV-A to I and K to M) and causes multiple disease phenotypes, including carcinomas and immunosuppression. However, the direct association between the different KoRV subtypes and carcinogenesis remains unknown. Differentially expressed gene (DEG) analysis of peripheral blood mononuclear cells (PBMCs) of koalas carrying both endogenous (KoRV-A) and exogenous (KoRV-A, B, and C) subtypes was performed using a high-throughput RNA-seq approach. PBMCs were obtained from three healthy koalas: one infected with endogenous (KoRV-A; Group I) and two infected with exogenous (KoRV-B and/or KoRV-C; Group II) subtypes. Additionally, spleen samples (n = 6) from six KoRV-infected deceased koalas (K1- K6) and blood samples (n = 1) from a live koala (K7) were collected and examined to validate the findings.
RESULTS RESULTS
All koalas were positive for the endogenous KoRV-A subtype, and eight koalas were positive for KoRV-B and/or KoRV-C. Transcription of KoRV gag, pol, and env genes was detected in all koalas. Upregulation of cytokine and immunosuppressive genes was observed in koalas infected with KoRV-B or KoRV-B and -C subtypes, compared to koalas infected with only KoRV-A. We found 550 DEG signatures with significant (absolute p < 0.05, and absolute log
CONCLUSION CONCLUSIONS
Thus, it can be concluded that multiple KoRV subtypes affect disease progression in koalas and that the predicted hub genes could be promising prognostic biomarkers for pathogenesis.

Identifiants

pubmed: 39478576
doi: 10.1186/s12917-024-04357-5
pii: 10.1186/s12917-024-04357-5
doi:

Substances chimiques

Biomarkers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

496

Informations de copyright

© 2024. The Author(s).

Références

Xu W, Stadler CK, Gorman K, Jensen N, Kim D, et al. An exogenous retrovirus isolated from koalas with malignant neoplasias in a US zoo. Proc Natl Acad Sci. 2013;110:11547–52.
pubmed: 23798387 doi: 10.1073/pnas.1304704110
Tarlinton R, Meers J, Young P. Endogenous retroviruses: biology and evolution of the endogenous koala retrovirus. Cell Mol Life Sci. 2008;65:3413–21.
pubmed: 18818870 doi: 10.1007/s00018-008-8499-y
Waugh CA, Hanger J, Loader J, King A, Hobbs M, et al. Infection with koala retrovirus subgroup B (KoRV-B), but not KoRV-A, is associated with chlamydial disease in free-ranging koalas (Phascolarctos cinereus). Sci Rep. 2017;7:134.
pubmed: 28273935 doi: 10.1038/s41598-017-00137-4
Blyton MD, Pyne M, Young P, Chappell K. Koala retrovirus load and non-A subtypes are associated with secondary disease among wild northern koalas. PLoS Pathog. 2022;18: e1010513.
pubmed: 35588407 doi: 10.1371/journal.ppat.1010513
Hanger JJ, Bromham LD, McKee JJ, O’Brien TM, Robinson WF. The nucleotide sequence of koala (Phascolarctos cinereus) retrovirus: a novel type C endogenous virus related to Gibbon ape leukemia virus. J Virol. 2000;74:4264–72.
pubmed: 10756041 doi: 10.1128/JVI.74.9.4264-4272.2000
Tarlinton RE, Meers J, Young PR. Retroviral invasion of the koala genome. Nature. 2006;442:79–81.
pubmed: 16823453 doi: 10.1038/nature04841
Hashem MA, Maetani F, Kayesh MEH, Eiei T, Mochizuki K, et al. Transmission of koala retrovirus from parent koalas to a joey in a Japanese zoo. J Virol. 2020;94:e00019-00020.
pubmed: 32188730 doi: 10.1128/JVI.00019-20
Shojima T, Yoshikawa R, Hoshino S, Shimode S, Nakagawa S, et al. Identification of a novel subgroup of koala retrovirus from koalas in Japanese zoos. J Virol. 2013;87:9943–8.
pubmed: 23824806 doi: 10.1128/JVI.01385-13
Xu W, Gorman K, Santiago JC, Kluska K, Eiden MV. Genetic diversity of koala retroviral envelopes. Viruses. 2015;7:1258–70.
pubmed: 25789509 doi: 10.3390/v7031258
Chappell K, Brealey J, Amarilla A, Watterson D, Hulse L, et al. Phylogenetic diversity of koala retrovirus within a wild koala population. J Virol. 2017;91:e01820–e01816.
pubmed: 27881645 pmcid: 5244342 doi: 10.1128/JVI.01820-16
Hobbs M, King A, Salinas R, Chen Z, Tsangaras K, et al. Long-read genome sequence assembly provides insight into ongoing retroviral invasion of the koala germline. Sci Rep. 2017;7:15838.
pubmed: 29158564 pmcid: 5696478 doi: 10.1038/s41598-017-16171-1
Zheng H, Pan Y, Tang S, Pye GW, Stadler CK, et al. Koala retrovirus diversity, transmissibility, and disease associations. Retrovirology. 2020;17:1–23.
doi: 10.1186/s12977-020-00541-1
Quigley BL, Timms P. Helping koalas battle disease–Recent advances in Chlamydia and koala retrovirus (KoRV) disease understanding and treatment in koalas. FEMS Microbiol Rev. 2020;44:583–605.
pubmed: 32556174 pmcid: 8600735 doi: 10.1093/femsre/fuaa024
Hashem MA, Kayesh MEH, Maetani F, Eiei T, Mochizuki K, et al. Koala retrovirus (KoRV) subtypes and their impact on captive koala (Phascolarctos cinereus) health. Arch Virol. 2021;166:1893–901.
Quigley BL, Ong VA, Hanger J, Timms P. Molecular dynamics and mode of transmission of koala retrovirus as it invades and spreads through a wild Queensland koala population. J Virol. 2018;92:e01871–e01817.
pubmed: 29237837 pmcid: 5809739 doi: 10.1128/JVI.01871-17
MacLean D, Jones JD, Studholme DJ. Application of’next-generation’sequencing technologies to microbial genetics. Nat Rev Microbiol. 2009;7:96–7.
doi: 10.1038/nrmicro2088
Schuster SC. Next-generation sequencing transforms today’s biology. Nat Methods. 2008;5:16–8.
pubmed: 18165802 doi: 10.1038/nmeth1156
Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet. 2009;10:57–63.
pubmed: 19015660 pmcid: 2949280 doi: 10.1038/nrg2484
Ashrafi F, Nassiri M, Javadmanesh A, Rahimi H, Rezaee SA. Epigenetics evaluation of the oncogenic mechanisms of two closely related bovine and human deltaretroviruses: A system biology study. Microb Pathog. 2020;139: 103845.
pubmed: 31698053 doi: 10.1016/j.micpath.2019.103845
Cheng C, Wu X, Shen Y, Li Q. KIF14 and KIF23 promote cell proliferation and chemoresistance in HCC cells, and predict worse prognosis of patients with HCC. Cancer Manag Res. 2020;Volume 12:13241–57.
doi: 10.2147/CMAR.S285367
Wu Z, Song Y, Wu Y, Ge L, Liu Z, et al. Identification of KIF23 as a prognostic biomarker associated with progression of clear cell renal cell carcinoma. Front Cell Dev Biol 2022;10:839821. https://doi.org/10.3389/fcell.2022.839821 .
Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 2008;18:1509–17.
pubmed: 18550803 pmcid: 2527709 doi: 10.1101/gr.079558.108
Wilhelm BT, Landry J-R. RNA-Seq—quantitative measurement of expression through massively parallel RNA-sequencing. Methods. 2009;48:249–57.
pubmed: 19336255 doi: 10.1016/j.ymeth.2009.03.016
Hoque MN, Sarkar M, Hasan M, Khan M, Hossain M, et al. Differential gene expression profiling reveals potential biomarkers and pharmacological compounds against SARS-CoV-2: Insights from machine learning and bioinformatics approaches. Frontiers in Immunology: 3875. 2022.
Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, et al. RNA-Seq signatures normalized by mRNA abundance allow absolute deconvolution of human immune cell types. Cell Rep. 2019;26(1627–1640): e1627.
doi: 10.1016/j.celrep.2019.01.041
Zamani-Ahmadmahmudi M, Najafi A, Nassiri S. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes. J Comp Pathol. 2015;152:119–30.
pubmed: 25678421 doi: 10.1016/j.jcpa.2014.11.008
Fu Y-P, Liang Y, Dai Y-T, Yang C-T, Duan M-Z, et al. De novo sequencing and transcriptome analysis of Pleurotus eryngii subsp. tuoliensis (Bailinggu) mycelia in response to cold stimulation. Molecules. 2016;21: 560.
pubmed: 27196889 pmcid: 6273410 doi: 10.3390/molecules21050560
Kayesh MEH, Hashem MA, Tsukiyama-Kohara K. Toll-like receptor and cytokine responses to infection with endogenous and exogenous Koala retrovirus, and vaccination as a control strategy. Curr Issues Mol Biol. 2021;43:52–64.
pubmed: 33946297 pmcid: 8928999 doi: 10.3390/cimb43010005
Kayesh MEH, Yamato O, Rahman MM, Hashem MA, Maetani F, et al. Molecular dynamics of koala retrovirus infection in captive koalas in Japan. Arch Virol. 2019;164:757–65.
Tang Y, Zhang Y, Hu X. Identification of potential hub genes related to diagnosis and prognosis of hepatitis B virus-related hepatocellular carcinoma via integrated bioinformatics analysis. BioMed Res Int. 2020;(1):4251761. https://doi.org/10.1155/2020/4251761 .
Ashrafi F, Ghezeldasht SA, Ghobadi MZ. Identification of joint gene players implicated in the pathogenesis of HTLV-1 and BLV through a comprehensive system biology analysis. Microb Pathog. 2021;160:105153.
Hashem MA, Kayesh MEH, Yamato O, Maetani F, Eiei T, et al. Coinfection with koala retrovirus subtypes A and B and its impact on captive koalas in Japanese zoos. Arch Virol. 2019;164:2735–45.
Batman U, Deretic J, Firat-Karalar EN. The ciliopathy protein CCDC66 controls mitotic progression and cytokinesis by promoting microtubule nucleation and organization. PLoS Biol. 2022;20: e3001708.
pubmed: 35849559 doi: 10.1371/journal.pbio.3001708
Gu P, Zhang M, Chen X, Du J, Chen L, et al. Prognostic value of cell division cycle-associated protein-3 in prostate cancer. Medicine 2023;102:36(e34655).
Watt, KEN, Macintosh J, Bernard G, Paul A. RNA polymerases I and III in development and disease. Semin Cell Dev Biol 2023;136:49–63.
Kang J, Brajanovski N, Chan KT, Xuan J, Pearson RB, et al. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther. 2021;6:323.
pubmed: 34462428 doi: 10.1038/s41392-021-00728-8
Salmerón-Hernández Á, Noriega-Reyes MY, Jordan A, Baranda-Avila N, Langley E. BCAS2 enhances carcinogenic effects of estrogen receptor alpha in breast cancer cells. Int J Mol Sci. 2019;20:966.
pubmed: 30813351 doi: 10.3390/ijms20040966
Zhu LJ, Pan Y, Chen XY, Hou PF. BUB1 promotes proliferation of liver cancer cells by activating SMAD2 phosphorylation. Oncol Lett. 2020;19:3506–12.
pubmed: 32269624
Li Z, Yao Q, Zhao S, Wang Z, Li Y. Protein coding gene CRNKL1 as a potential prognostic biomarker in esophageal adenocarcinoma. Artif Intell Med. 2017;76:1–6.
pubmed: 28363284 doi: 10.1016/j.artmed.2017.01.002
Hu Y, Zheng M, Wang C, Wang S, Gou R, et al. Identification of KIF23 as a prognostic signature for ovarian cancer based on large-scale sampling and clinical validation. Am J Trans Research. 2020;12:4955.
Kawai T, Akira S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int Immunol. 2009;21:317–37.
pubmed: 19246554 doi: 10.1093/intimm/dxp017
Liang W-T, Liu X-F, Huang H-B, Gao Z-M, Li K. Prognostic significance of KIF23 expression in gastric cancer. World J gastrointestinal oncology. 2020;12: 1104.
doi: 10.4251/wjgo.v12.i10.1104
Campbell SL, Wellen KE. Metabolic signaling to the nucleus in cancer. Mol Cell. 2018;71:398–408.
pubmed: 30075141 doi: 10.1016/j.molcel.2018.07.015
Rubin JB, Lagas JS, Broestl L, Sponagel J, Rockwell N, et al. Sex differences in cancer mechanisms. Biol Sex Differ. 2020;11:1–29.
doi: 10.1186/s13293-020-00291-x
Singh U, Hernandez KM, Aronow BJ, Wurtele ES. African Americans and European Americans exhibit distinct gene expression patterns across tissues and tumors associated with immunologic functions and environmental exposures. Sci Rep. 2021;11:9905.
pubmed: 33972602 doi: 10.1038/s41598-021-89224-1
Yamamoto R, Chung R, Vazquez JM, Sheng H, Steinberg PL, et al. Tissue-specific impacts of aging and genetics on gene expression patterns in humans. Nat Commun. 2022;13:5803.
pubmed: 36192477 doi: 10.1038/s41467-022-33509-0
Hoque MN, Istiaq A, Clement RA, Sultana M, Crandall KA, et al. Metagenomic deep sequencing reveals association of microbiome signature with functional biases in bovine mastitis. Sci Rep. 2019;9:1–14.
doi: 10.1038/s41598-019-49468-4
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
pubmed: 24695404 doi: 10.1093/bioinformatics/btu170
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357–60.
pubmed: 25751142 doi: 10.1038/nmeth.3317
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29:644–52.
pubmed: 21572440 pmcid: 3571712 doi: 10.1038/nbt.1883
Fonseca NA, Marioni J, Brazma A. RNA-seq gene profiling-a systematic empirical comparison. PLoS ONE. 2014;9: e107026.
pubmed: 25268973 pmcid: 4182317 doi: 10.1371/journal.pone.0107026
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.
pubmed: 24227677 doi: 10.1093/bioinformatics/btt656
Oliveros JC (2007) VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp/cnb/csic/es/tools/venny/index/html .
Cv M, Huynen M, Jaeggi D, Schmidt S, Bork P, et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.
doi: 10.1093/nar/gkg034
Wang J, Zhong J, Chen G, Li M, Wu F-x, et al. ClusterViz: a cytoscape APP for cluster analysis of biological network. IEEE/ACM Trans Comput Biol Bioinf. 2014;12:815–22.
doi: 10.1109/TCBB.2014.2361348
Lopes CT, Franz M, Kazi F, Donaldson SL, Morris Q, et al. Cytoscape Web: an interactive web-based network browser. Bioinformatics. 2010;26:2347–8.
pubmed: 20656902 pmcid: 2935447 doi: 10.1093/bioinformatics/btq430
Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. jvenn: an interactive Venn diagram viewer. BMC Bioinformatics. 2014;15:1–7.
doi: 10.1186/1471-2105-15-293
Huang DW, Sherman BT, Tan Q, Kir J, Liu D, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75.
pubmed: 17576678 pmcid: 1933169 doi: 10.1093/nar/gkm415
Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, et al. The Gene Ontology knowledgebase in 2023. Genetics. 2023;224:iyad031.
pubmed: 36866529 pmcid: 10158837 doi: 10.1093/genetics/iyad031
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2007;36:D480–4.
pubmed: 18077471 pmcid: 2238879 doi: 10.1093/nar/gkm882

Auteurs

Lipi Akter (L)

Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.

Md Abul Hashem (MA)

Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.

Mohammad Enamul Hoque Kayesh (MEH)

Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Department of Microbiology and Public Health, Patuakhali Science and Technology University, Babugonj, Barishal-8210, Bangladesh.

Md Arju Hossain (MA)

Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh.

Fumie Maetani (F)

Hirakawa Zoological Park, Kagoshima, 891-0133, Japan.
Awaji Farm, Park England Hill Zoo, Hyogo, 656-0443, Japan.

Rupaly Akhter (R)

Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.

Kazi Anowar Hossain (KA)

Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.

Md Haroon Or Rashid (MHO)

Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.
Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan.

Hiroko Sakurai (H)

Hirakawa Zoological Park, Kagoshima, 891-0133, Japan.

Takayuki Asai (T)

Hirakawa Zoological Park, Kagoshima, 891-0133, Japan.

M Nazmul Hoque (MN)

Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh. nazmul90@bsmrau.edu.bd.

Kyoko Tsukiyama-Kohara (K)

Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan. kkohara@vet.kagoshima-u.ac.jp.
Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, 890-0065, Japan. kkohara@vet.kagoshima-u.ac.jp.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH