Single-cell analysis of nasal epithelial cell development in domestic pigs.


Journal

Veterinary research
ISSN: 1297-9716
Titre abrégé: Vet Res
Pays: England
ID NLM: 9309551

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 26 04 2024
accepted: 28 08 2024
medline: 31 10 2024
pubmed: 31 10 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The nasal mucosa forms a critical barrier against the invasion of respiratory pathogens. Composed of a heterogeneous assortment of cell types, the nasal mucosa relies on the unique characteristics and complex intercellular dynamics of these cells to maintain their structural integrity and functional efficacy. In this study, single-cell RNA sequencing (scRNA-seq) of porcine nasal mucosa was performed, and nineteen distinct nasal cell types, including nine epithelial cell types, five stromal cell types, and five immune cell types, were identified. The distribution patterns of three representative types of epithelial cells (basal cells, goblet cells, and ciliated cells) were subsequently detected by immunofluorescence. We conducted a comparative analysis of these data with published human single-cell data, revealing consistent differentiation trajectories among porcine and human nasal epithelial cells. Specifically, basal cells serve as the initial stage in the differentiation process of nasal epithelial cells, which then epithelial cells. This research not only enhances our understanding of the composition and transcriptional signature of porcine nasal mucosal cells but also offers a theoretical foundation for developing alternative models for human respiratory diseases.

Identifiants

pubmed: 39478588
doi: 10.1186/s13567-024-01403-w
pii: 10.1186/s13567-024-01403-w
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

140

Subventions

Organisme : National Natural Science Foundation of China
ID : 31930109
Organisme : Natural Science Foundation of Jiangsu Province
ID : BK20200536

Informations de copyright

© 2024. The Author(s).

Références

Xu Q, Zhang Y, Sun W, Chen H, Zhu D, Lu C, Yin Y, Rai KR, Chen JL, Chen Y (2022) Epidemiology and genetic diversity of PCV2 reveals that PCV2e is an emerging genotype in southern China: a preliminary study. Viruses 14:724
pubmed: 35458454 doi: 10.3390/v14040724
Amorij JP, Kersten GF, Saluja V, Tonnis WF, Hinrichs WL, Slütter B, Bal SM, Bouwstra JA, Huckriede A, Jiskoot W (2012) Towards tailored vaccine delivery: needs, challenges and perspectives. J Control Release 161:363–376
pubmed: 22245687 doi: 10.1016/j.jconrel.2011.12.039
Yuk J, Akash MMH, Chakraborty A, Basu S, Chamorro LP, Jung S (2023) Morphology of pig nasal structure and modulation of airflow and basic thermal conditioning. Integr Comp Biol 63:304–314
pubmed: 36731869 doi: 10.1093/icb/icad005
Yang J, Dai L, Yu Q, Yang Q (2017) Histological and anatomical structure of the nasal cavity of Bama minipigs. PLoS One 12:e0173902
pubmed: 28339502 doi: 10.1371/journal.pone.0173902
Li Y, Yang C, Jiang Y, Wang X, Yuan C, Qi J, Yang Q (2023) Characteristics of the nasal mucosa of commercial pigs during normal development. Vet Res 54:37
pubmed: 37095544 doi: 10.1186/s13567-023-01164-y
Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y (2022) Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med 12:e694
pubmed: 35352511 doi: 10.1002/ctm2.694
Deprez M, Zaragosi LE, Truchi M, Becavin C, Ruiz García S, Arguel MJ, Plaisant M, Magnone V, Lebrigand K, Abelanet S, Brau F, Paquet A, Pe’er D, Marquette CH, Leroy S, Barbry P (2020) A single-cell atlas of the human healthy airways. Am J Respir Crit Care Med 202:1636–1645
pubmed: 32726565 doi: 10.1164/rccm.201911-2199OC
Ziegler CGK, Allon SJ, Nyquist SK, Mbano IM, Miao VN, Tzouanas CN, Cao Y, Yousif AS, Bals J, Hauser BM, Feldman J, Muus C, Wadsworth MH, Kazer SW, Hughes TK, Doran B, Gatter GJ, Vukovic M, Taliaferro F, Mead BE, Guo Z, Wang JP, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre JMS, Taylor CJ, Lin B et al (2020) SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell 181:1016-1035.e19
pubmed: 32413319 doi: 10.1016/j.cell.2020.04.035
Wang F, Ding P, Liang X, Ding X, Brandt CB, Sjöstedt E, Zhu J, Bolund S, Zhang L, de Rooij L, Luo L, Wei Y, Zhao W, Lv Z, Haskó J, Li R, Qin Q, Jia Y, Wu W, Yuan Y, Pu M, Wang H, Wu A, Xie L, Liu P, Chen F, Herold J, Kalucka J, Karlsson M, Zhang X et al (2022) Endothelial cell heterogeneity and microglia regulons revealed by a pig cell landscape at single-cell level. Nat Commun 13:3620
pubmed: 35750885 doi: 10.1038/s41467-022-31388-z
Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V (2015) Efficacy of the porcine species in biomedical research. Front Genet 6:293
pubmed: 26442109 doi: 10.3389/fgene.2015.00293
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C (2021) Importance of the pig as a human biomedical model. Sci Transl Med 13:eabd5758
pubmed: 34818055 doi: 10.1126/scitranslmed.abd5758
Wolf E, Kemter E, Klymiuk N, Reichart B (2019) Genetically modified pigs as donors of cells, tissues, and organs for xenotransplantation. Anim Front 9:13–20
pubmed: 32002258 doi: 10.1093/af/vfz014
Cooper DK, Ekser B, Ramsoondar J, Phelps C, Ayares D (2016) The role of genetically engineered pigs in xenotransplantation research. J Pathol 238:288–299
pubmed: 26365762 doi: 10.1002/path.4635
Al-Mashhadi RH, Sørensen CB, Kragh PM, Christoffersen C, Mortensen MB, Tolbod LP, Thim T, Du Y, Li J, Liu Y, Moldt B, Schmidt M, Vajta G, Larsen T, Purup S, Bolund L, Nielsen LB, Callesen H, Falk E, Mikkelsen JG, Bentzon JF (2013) Familial hypercholesterolemia and atherosclerosis in cloned minipigs created by DNA transposition of a human PCSK9 gain-of-function mutant. Sci Transl Med 5:166ra161
doi: 10.1126/scitranslmed.3004853
Kleinwort KJH, Amann B, Hauck SM, Hirmer S, Blutke A, Renner S, Uhl PB, Lutterberg K, Sekundo W, Wolf E, Deeg CA (2017) Retinopathy with central oedema in an INS (C94Y) transgenic pig model of long-term diabetes. Diabetologia 60:1541–1549
pubmed: 28480495 doi: 10.1007/s00125-017-4290-7
Camacho P, Fan H, Liu Z, He JQ (2016) Large mammalian animal models of heart disease. J Cardiovasc Dev Dis 3:30
pubmed: 29367573
Porrett PM, Orandi BJ, Kumar V, Houp J, Anderson D, Cozette Killian A, Hauptfeld-Dolejsek V, Martin DE, Macedon S, Budd N, Stegner KL, Dandro A, Kokkinaki M, Kuravi KV, Reed RD, Fatima H, Killian JT Jr., Baker G, Perry J, Wright ED, Cheung MD, Erman EN, Kraebber K, Gamblin T, Guy L, George JF, Ayares D, Locke JE (2022) First clinical-grade porcine kidney xenotransplant using a human decedent model. Am J Transpl 22:1037–1053
doi: 10.1111/ajt.16930
Yang JR, Kuo CY, Yu IL, Kung FY, Wu FT, Lin JS, Liu MT (2022) Human infection with a reassortant swine-origin influenza A(H1N2)v virus in Taiwan, 2021. Virol J 19:63
pubmed: 35392932 doi: 10.1186/s12985-022-01794-2
Chen W, Yan M, Yang L, Ding B, He B, Wang Y, Liu X, Liu C, Zhu H, You B, Huang S, Zhang J, Mu F, Xiang Z, Feng X, Wen J, Fang J, Yu J, Yang H, Wang J (2005) SARS-associated coronavirus transmitted from human to pig. Emerg Infect Dis 11:446–448
pubmed: 15757562 doi: 10.3201/eid1103.040824
García-Nicolás O, Braun RO, Milona P, Lewandowska M, Dijkman R, Alves MP, Summerfield A (2018) Targeting of the nasal mucosa by Japanese encephalitis virus for non-vector-borne transmission. J Virol 92:e01091–18
pubmed: 30282716 doi: 10.1128/JVI.01091-18
Bertho N, Meurens F (2021) The pig as a medical model for acquired respiratory diseases and dysfunctions: an immunological perspective. Mol Immunol 135:254–267
pubmed: 33933817 doi: 10.1016/j.molimm.2021.03.014
Zhang J, Liu J, Yuan Y, Huang F, Ma R, Luo B, Xi Z, Pan T, Liu B, Zhang Y, Zhang X, Luo Y, Wang J, Zhao M, Lu G, Deng K, Zhang H (2020) Two waves of pro-inflammatory factors are released during the influenza a virus (IAV)-driven pulmonary immunopathogenesis. PLoS Pathog 16:e1008334
pubmed: 32101596 doi: 10.1371/journal.ppat.1008334
Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM, Hao Y, Stoeckius M, Smibert P, Satija R (2019) Comprehensive integration of single-cell data. Cell 177:1888-1902.e21
pubmed: 31178118 pmcid: 6687398 doi: 10.1016/j.cell.2019.05.031
Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, Baglaenko Y, Brenner M, Loh PR, Raychaudhuri S (2019) Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods 16:1289–1296
pubmed: 31740819 doi: 10.1038/s41592-019-0619-0
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420
pubmed: 29608179 doi: 10.1038/nbt.4096
Qiu X, Hill A, Packer J, Lin D, Ma YA, Trapnell C (2017) Single-cell mRNA quantification and differential analysis with census. Nat Methods 14:309–315
pubmed: 28114287 doi: 10.1038/nmeth.4150
Zheng J, Lin J, Yang C, Ma Y, Liu P, Li Y, Yang Q (2023) Characteristics of nasal mucosal barrier in lambs at different developmental stages. Dev Comp Immunol 139:104587
pubmed: 36370908 doi: 10.1016/j.dci.2022.104587
Virtanen M, Sirsjö A, Vahlquist A, Törmä H (2010) Keratins 2 and 4/13 in reconstituted human skin are reciprocally regulated by retinoids binding to nuclear receptor RARalpha. Exp Dermatol 19:674–681
pubmed: 20456496 doi: 10.1111/j.1600-0625.2010.01079.x
Plasschaert LW, Žilionis R, Choo-Wing R, Savova V, Knehr J, Roma G, Klein AM, Jaffe AB (2018) A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560:377–381
pubmed: 30069046 doi: 10.1038/s41586-018-0394-6
Zhang L, Zhu J, Wang H, Xia J, Liu P, Chen F, Jiang H, Miao Q, Wu W, Zhang L, Luo L, Jiang X, Bai Y, Sun C, Chen D, Zhang X (2021) A high-resolution cell atlas of the domestic pig lung and an online platform for exploring lung single-cell data. J Genet Genomics 48:411–425
pubmed: 34144929 doi: 10.1016/j.jgg.2021.03.012
Madissoon E, Oliver AJ, Kleshchevnikov V, Wilbrey-Clark A, Polanski K, Richoz N, Ribeiro Orsi A, Mamanova L, Bolt L, Elmentaite R, Pett JP, Huang N, Xu C, He P, Dabrowska M, Pritchard S, Tuck L, Prigmore E, Perera S, Knights A, Oszlanczi A, Hunter A, Vieira SF, Patel M, Lindeboom RGH, Campos LS, Matsuo K, Nakayama T, Yoshida M, Worlock KB et al (2023) A spatially resolved atlas of the human lung characterizes a gland-associated immune niche. Nat Genet 55:66–77
pubmed: 36543915 doi: 10.1038/s41588-022-01243-4
Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, Liu L, Huang D, Jiang J, Cui GS, Yang Y, Wang W, Guo D, Dai M, Guo J, Zhang T, Liao Q, Liu Y, Zhao YL, Han DL, Zhao Y, Yang YG, Wu W (2019) Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 29:725–738
pubmed: 31273297 pmcid: 6796938 doi: 10.1038/s41422-019-0195-y
Wang W, Xu Y, Wang L, Zhu Z, Aodeng S, Chen H, Cai M, Huang Z, Han J, Wang L, Lin Y, Hu Y, Zhou L, Wang X, Zha Y, Jiang W, Gao Z, He W, Lv W, Zhang J (2022) Single-cell profiling identifies mechanisms of inflammatory heterogeneity in chronic rhinosinusitis. Nat Immunol 23:1484–1494
pubmed: 36138182 doi: 10.1038/s41590-022-01312-0
Kuonqui K, Campbell AC, Sarker A, Roberts A, Pollack BL, Park HJ, Shin J, Brown S, Mehrara BJ, Kataru RP (2023) Dysregulation of lymphatic endothelial VEGFR3 signaling in disease. Cells 13:68
pubmed: 38201272 doi: 10.3390/cells13010068
Pan Y, Wang WD, Yago T (2014) Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells. Microvasc Res 94:96–102
pubmed: 24944097 doi: 10.1016/j.mvr.2014.05.006
Kenney HM, Wu CL, Loiselle AE, Xing L, Ritchlin CT, Schwarz EM (2022) Single-cell transcriptomics of popliteal lymphatic vessels and peripheral veins reveals altered lymphatic muscle and immune cell populations in the TNF-Tg arthritis model. Arthritis Res Ther 24:64
pubmed: 35255954 doi: 10.1186/s13075-022-02730-z
Zhu L, Yang P, Zhao Y, Zhuang Z, Wang Z, Song R, Zhang J, Liu C, Gao Q, Xu Q, Wei X, Sun HX, Ye B, Wu Y, Zhang N, Lei G, Yu L, Yan J, Diao G, Meng F, Bai C, Mao P, Yu Y, Wang M, Yuan Y, Deng Q, Li Z, Huang Y, Hu G, Liu Y et al (2020) Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity 53:685–696.e3
pubmed: 32783921 doi: 10.1016/j.immuni.2020.07.009
Tekguc M, Wing JB, Osaki M, Long J, Sakaguchi S (2021) Treg-expressed CTLA-4 depletes CD80/CD86 by trogocytosis, releasing free PD-L1 on antigen-presenting cells. Proc Natl Acad Sci U S A 118:e2023739118
pubmed: 34301886 doi: 10.1073/pnas.2023739118
Alvarez B, Martínez P, Yuste M, Poderoso T, Alonso F, Domínguez J, Ezquerra A, Revilla C (2014) Phenotypic and functional heterogeneity of CD169⁺ and CD163⁺ macrophages from porcine lymph nodes and spleen. Dev Comp Immunol 44:44–49
pubmed: 24291017 doi: 10.1016/j.dci.2013.11.010
Yao C, Bora SA, Parimon T, Zaman T, Friedman OA, Palatinus JA, Surapaneni NS, Matusov YP, Cerro Chiang G, Kassar AG, Patel N, Green CER, Aziz AW, Suri H, Suda J, Lopez AA, Martins GA, Stripp BR, Gharib SA, Goodridge HS, Chen P (2021) Cell-type-specific immune dysregulation in severely ill COVID-19 patients. Cell Rep 34:108590
pubmed: 33357411 doi: 10.1016/j.celrep.2020.108590
Liu H, Zhao R, Qin R, Sun H, Huang Q, Liu L, Tian Z, Nashan B, Sun C, Sun R (2022) Panoramic comparison between NK cells in healthy and cancerous liver through single-cell RNA sequencing. Cancer Biol Med 19:1334–1351
pubmed: 35856557
Peters AE, Knöpper K, Grafen A, Kastenmüller W (2022) A multifunctional mouse model to study the role of Samd3. Eur J Immunol 52:328–337
pubmed: 34626120 doi: 10.1002/eji.202149469
Sun HF, Li LD, Lao IW, Li X, Xu BJ, Cao YQ, Jin W (2022) Single-cell RNA sequencing reveals cellular and molecular reprograming landscape of gliomas and lung cancer brain metastases. Clin Transl Med 12:e1101
pubmed: 36336787 doi: 10.1002/ctm2.1101
Xiong LL, Xue LL, Du RL, Niu RZ, Chen L, Chen J, Hu Q, Tan YX, Shang HF, Liu J, Yu CY, Wang TH (2021) Single-cell RNA sequencing reveals B cell-related molecular biomarkers for Alzheimer’s disease. Exp Mol Med 53:1888–1901
pubmed: 34880454 doi: 10.1038/s12276-021-00714-8
Matthys OB, Hookway TA, McDevitt TC (2016) Design principles for engineering of tissues from human pluripotent stem cells. Curr Stem Cell Rep 2:43–51
pubmed: 27330934 doi: 10.1007/s40778-016-0030-z
Whitsett JA (2018) Airway epithelial differentiation and mucociliary clearance. Ann Am Thorac Soc 15:S143–s148
pubmed: 30431340 doi: 10.1513/AnnalsATS.201802-128AW
Wells JM, Watt FM (2018) Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 557:322–328
pubmed: 29769669 doi: 10.1038/s41586-018-0073-7
Teixeira VH, Nadarajan P, Graham TA, Pipinikas CP, Brown JM, Falzon M, Nye E, Poulsom R, Lawrence D, Wright NA, McDonald S, Giangreco A, Simons BD, Janes SM (2013) Stochastic homeostasis in human airway epithelium is achieved by neutral competition of basal cell progenitors. Elife 2:e00966
pubmed: 24151545 doi: 10.7554/eLife.00966
Viennois E, Pujada A, Sung J, Yang C, Gewirtz AT, Chassaing B, Merlin D (2020) Impact of PepT1 deletion on microbiota composition and colitis requires multiple generations. NPJ Biofilms Microbiomes 6:27
pubmed: 32694535 doi: 10.1038/s41522-020-0137-y
Cornick S, Tawiah A, Chadee K (2015) Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3:e982426
pubmed: 25838985 doi: 10.4161/21688370.2014.982426
Sapoznikov A, Gal Y, Evgy Y, Aftalion M, Katalan S, Sabo T, Kronman C, Falach R (2021) Intramuscular exposure to a lethal dose of ricin toxin leads to endothelial glycocalyx shedding and microvascular flow abnormality in mice and swine. Int J Mol Sci 22:12345
pubmed: 34830227 doi: 10.3390/ijms222212345
Githens S (1988) The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. J Pediatr Gastroenterol Nutr 7:486–506
pubmed: 2456383 doi: 10.1002/j.1536-4801.1988.tb09581.x
Venglovecz V, Rakonczay Z Jr, Gray MA, Hegyi P (2015) Potassium channels in pancreatic duct epithelial cells: their role, function and pathophysiological relevance. Pflugers Arch 467:625–640
pubmed: 25074489 doi: 10.1007/s00424-014-1585-0
Allen A, Flemström G, Garner A, Kivilaakso E (1993) Gastroduodenal mucosal protection. Physiol Rev 73:823–857
pubmed: 8415927 doi: 10.1152/physrev.1993.73.4.823
Wang CX, Zhang L, Wang B (2022) One cell at a time (OCAT): a unified framework to integrate and analyze single-cell RNA-seq data. Genome Biol 23:102
pubmed: 35443717 doi: 10.1186/s13059-022-02659-1
Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, Gouran M, Turco GM, Zhu Y, O’Malley RC, Brady SM, Dickel DE (2019) High-throughput single-cell transcriptome profiling of plant cell types. Cell Rep 27:2241–2247e4
pubmed: 31091459 doi: 10.1016/j.celrep.2019.04.054
Ruiz García S, Deprez M, Lebrigand K, Cavard A, Paquet A, Arguel MJ, Magnone V, Truchi M, Caballero I, Leroy S, Marquette CH, Marcet B, Barbry P, Zaragosi LE (2019) Novel dynamics of human mucociliary differentiation revealed by single-cell RNA sequencing of nasal epithelial cultures. Development 146:dev177428
pubmed: 31558434 doi: 10.1242/dev.177428
Kurashima Y, Kiyono H (2017) Mucosal ecological network of epithelium and immune cells for gut homeostasis and tissue healing. Annu Rev Immunol 35:119–147
pubmed: 28125357 doi: 10.1146/annurev-immunol-051116-052424
Zhou T, Chen Y, Liao Z, Zhang L, Su D, Li Z, Yang X, Ke X, Liu H, Chen Y, Weng R, Shen H, Xu C, Wan Y, Xu R, Su P (2023) Spatiotemporal characterization of human early intervertebral disc formation at single-cell resolution. Adv Sci 10:e2206296
doi: 10.1002/advs.202206296
Gao S, Shi Q, Zhang Y, Liang G, Kang Z, Huang B, Ma D, Wang L, Jiao J, Fang X, Xu CR, Liu L, Xu X, Göttgens B, Li C, Liu F (2022) Identification of HSC/MPP expansion units in fetal liver by single-cell spatiotemporal transcriptomics. Cell Res 32:38–53
pubmed: 34341490 doi: 10.1038/s41422-021-00540-7
Hermans D, Rodriguez-Mogeda C, Kemps H, Bronckaers A, de Vries HE, Broux B (2023) Nectins and nectin-like molecules drive vascular development and barrier function. Angiogenesis 26:349–362
pubmed: 36867287 doi: 10.1007/s10456-023-09871-y
Zhang R, Zhang L, Li P, Pang K, Liu H, Tian L (2023) Epithelial barrier in the nasal mucosa, related risk factors and diseases. Int Arch Allergy Immunol 184:481–501
pubmed: 36724763 doi: 10.1159/000528969
Garcia MA, Nelson WJ, Chavez N (2018) Cell-cell junctions organize structural and signaling networks. Cold Spring Harb Perspect Biol 10:a029181
pubmed: 28600395 doi: 10.1101/cshperspect.a029181
Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3:920–940
pubmed: 21994762 doi: 10.3390/v3060920
Karimi-Googheri M, Arababadi MK (2014) TLR3 plays significant roles against hepatitis B virus. Mol Biol Rep 41:3279–3286
pubmed: 24477590 doi: 10.1007/s11033-014-3190-x
Chen Y, Lin J, Zhao Y, Ma X, Yi H (2021) Toll-like receptor 3 (TLR3) regulation mechanisms and roles in antiviral innate immune responses. J Zhejiang Univ Sci B 22:609–632
pubmed: 34414698 doi: 10.1631/jzus.B2000808
Zhang Y, Liang X, Bao X, Xiao W, Chen G (2022) Toll-like receptor 4 (TLR4) inhibitors: current research and prospective. Eur J Med Chem 235:114291
pubmed: 35307617 doi: 10.1016/j.ejmech.2022.114291
Aboudounya MM, Heads RJ (2021) COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 may bind and activate TLR4 to increase ACE2 expression, facilitating entry and causing hyperinflammation. Mediators Inflamm 2021:8874339
pubmed: 33505220 doi: 10.1155/2021/8874339
Mukhopadhyay S, Plüddemann A, Gordon S (2009) Macrophage pattern recognition receptors in immunity, homeostasis and self tolerance. Adv Exp Med Biol 653:1–14
pubmed: 19799108 doi: 10.1007/978-1-4419-0901-5_1
Balan S, Saxena M, Bhardwaj N (2019) Dendritic cell subsets and locations. Int Rev Cell Mol Biol 348:1–68
pubmed: 31810551 doi: 10.1016/bs.ircmb.2019.07.004
Lai KM, Goh BH, Lee WL (2020) Attenuating influenza a virus infection by heparin binding EGF-like growth factor. Growth Factors 38:167–176
pubmed: 33719806 doi: 10.1080/08977194.2021.1895144
Yu DS, Wu XX, Weng TH, Cheng LF, Liu FM, Wu HB, Lu XY, Wu NP, Sun SL, Yao HP (2024) Host proteins interact with viral elements and affect the life cycle of highly pathogenic avian influenza a virus H7N9. Heliyon 10:e28218
pubmed: 38560106 doi: 10.1016/j.heliyon.2024.e28218
Ahn JH, Kim J, Hong SP, Choi SY, Yang MJ, Ju YS, Kim YT, Kim HM, Rahman MDT, Chung MK, Hong SD, Bae H, Lee CS, Koh GY (2021) Nasal ciliated cells are primary targets for SARS-CoV-2 replication in the early stage of COVID-19. J Clin Invest 131:e148517
pubmed: 34003804 doi: 10.1172/JCI148517
Griffiths CD, Bilawchuk LM, McDonough JE, Jamieson KC, Elawar F, Cen Y, Duan W, Lin C, Song H, Casanova JL, Ogg S, Jensen LD, Thienpont B, Kumar A, Hobman TC, Proud D, Moraes TJ, Marchant DJ (2020) IGF1R is an entry receptor for respiratory syncytial virus. Nature 583:615–619
pubmed: 32494007 doi: 10.1038/s41586-020-2369-7
Bakhshandeh B, Sorboni SG, Javanmard AR, Mottaghi SS, Mehrabi MR, Sorouri F, Abbasi A, Jahanafrooz Z (2021) Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infect Genet Evol 90:104773
pubmed: 33607284 pmcid: 7886638 doi: 10.1016/j.meegid.2021.104773
Hussain M, Jabeen N, Raza F, Shabbir S, Baig AA, Amanullah A, Aziz B (2020) Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J Med Virol 92:1580–1586
pubmed: 32249956 doi: 10.1002/jmv.25832
Peck KM, Cockrell AS, Yount BL, Scobey T, Baric RS, Heise MT (2015) Glycosylation of mouse DPP4 plays a role in inhibiting Middle East respiratory syndrome coronavirus infection. J Virol 89:4696–4699
pubmed: 25653445 doi: 10.1128/JVI.03445-14

Auteurs

Wenqian Wang (W)

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Ruiling Liu (R)

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Qiu Zhong (Q)

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Yunlei Cao (Y)

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Jiaxin Qi (J)

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China.

Yuchen Li (Y)

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China. yuchenli2022@njau.edu.cn.

Qian Yang (Q)

MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China. zxbyq@njau.edu.cn.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH