A head-to-head comparison of MM/PBSA and MM/GBSA in predicting binding affinities for the CB


Journal

Journal of molecular modeling
ISSN: 0948-5023
Titre abrégé: J Mol Model
Pays: Germany
ID NLM: 9806569

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 06 06 2024
accepted: 23 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The substantial increase in the number of active and inactive-state CB The study utilized the docked dataset (Induced Fit Docking with Glide XP scoring function) from Loo et al., consisting of 46 ligands-23 agonists and 23 antagonists. The equilibrated structures from Loo et al. were subjected to 30 ns production simulations using GROMACS 2018 at 300 K and 1 atm with the velocity rescaling thermostat and the Parinello-Rahman barostat. AMBER ff99SB*-ILDN was used for the proteins, General Amber Force Field (GAFF) was used for the ligands, and Slipids parameters were used for lipids. MM/PBSA and MM/GBSA binding free energies were then calculated using gmx_MMPBSA. The solute dielectric constant was varied between 1, 2, and 4 to study the effect of different solute dielectric constants on the performance of MM/PB(GB)SA. The effect of entropy on MM/PB(GB)SA binding free energies was evaluated using the interaction entropy module implemented in gmx_MMPBSA. Five GB models, GB

Identifiants

pubmed: 39480515
doi: 10.1007/s00894-024-06189-4
pii: 10.1007/s00894-024-06189-4
doi:

Substances chimiques

Receptor, Cannabinoid, CB1 0
Ligands 0
Cannabinoids 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

390

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Plasse TF (1991) Clinical use of dronabinol. J Clin Oncol 9:2079–2080. https://doi.org/10.1200/JCO.1991.9.11.2079
doi: 10.1200/JCO.1991.9.11.2079 pubmed: 1658243
Pacula RL, Smart R (2017) Medical marijuana and marijuana legalization. Annu Rev Clin Psychol 13:397–419. https://doi.org/10.1146/annurev-clinpsy-032816-045128
doi: 10.1146/annurev-clinpsy-032816-045128 pubmed: 28482686 pmcid: 6358421
Mechoulam R, Gaoni Y (1965) A total synthesis of dl-Δ1-tetrahydrocannabinol, the active constituent of hashish. J Am Chem Soc 87:3273–3275. https://doi.org/10.1021/ja01092a065
doi: 10.1021/ja01092a065 pubmed: 14324315
Munro S, Thomas KL, Abu-Shaar M (1993) Molecular characterization of a peripheral receptor for cannabinoids. Nature 365:61–65. https://doi.org/10.1038/365061a0
doi: 10.1038/365061a0 pubmed: 7689702
Matsuda LA, Lolait SJ, Brownstein MJ, Young AC, Bonner TI (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564. https://doi.org/10.1038/346561a0
doi: 10.1038/346561a0 pubmed: 2165569
Di Marzo V, Fontana A (1995) Anandamide, an endogenous cannabinomimetic eicosanoid: “Killing two birds with one stone.” Prostaglandins Leukot Essent Fat Acids 53:1–11. https://doi.org/10.1016/0952-3278(95)90077-2
doi: 10.1016/0952-3278(95)90077-2
Mechoulam R, Ben-Shabat S, Hanus L, Ligumsky M, Kaminski NE, Schatz AR et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90. https://doi.org/10.1016/0006-2952(95)00109-D
doi: 10.1016/0006-2952(95)00109-D pubmed: 7605349
Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K et al (1995) 2-arachidonolglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97. https://doi.org/10.1006/bbrc.1995.2437
doi: 10.1006/bbrc.1995.2437 pubmed: 7575630
Devane WA, Hanus L, Breuer A, Pertwee RG, Stevenson LA, Griffin G et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949. https://doi.org/10.1126/science.1470919
doi: 10.1126/science.1470919 pubmed: 1470919
Fredriksson R, Lagerström MC, Lundin LG, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272. https://doi.org/10.1124/mol.63.6.1256
doi: 10.1124/mol.63.6.1256 pubmed: 12761335
Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ (2004) Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 47:345–358. https://doi.org/10.1016/j.neuropharm.2004.07.030
doi: 10.1016/j.neuropharm.2004.07.030 pubmed: 15464149
Wu J (2019) Cannabis, cannabinoid receptors, and endocannabinoid system: yesterday, today, and tomorrow. Vol. 40. Acta Pharmacol Sin 40:297–299. https://doi.org/10.1038/s41401-019-0210-3
doi: 10.1038/s41401-019-0210-3 pubmed: 30670816 pmcid: 6460362
Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20:10–14. https://doi.org/10.1111/j.1365-2826.2008.01671.x
doi: 10.1111/j.1365-2826.2008.01671.x pubmed: 18426493
Cristino L, Bisogno T, di Marzo V (2020) Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat Rev Neurol 16:9–29. https://doi.org/10.1038/s41582-019-0284-z
doi: 10.1038/s41582-019-0284-z pubmed: 31831863
Rock EM, Parker LA (2016) Cannabinoids as potential treatment for chemotherapy-induced nausea and vomiting. Front Pharmacol 7:221. https://doi.org/10.3389/fphar.2016.00221
doi: 10.3389/fphar.2016.00221 pubmed: 27507945 pmcid: 4960260
Giacoppo S, Bramanti P, Mazzon E (2017) Sativex in the management of multiple sclerosis-related spasticity: an overview of the last decade of clinical evaluation. Mult Scler Relat Disord 17:22–31. https://doi.org/10.1016/j.msard.2017.06.015
doi: 10.1016/j.msard.2017.06.015 pubmed: 29055461
Koch L (2010) Taranabant no longer developed as an antiobesity agent. Nat Rev Endocrinol 6:300. https://doi.org/10.1038/nrendo.2010.56
doi: 10.1038/nrendo.2010.56 pubmed: 20518102
Johansson K, Neovius K, Desantis SM, Rössner S, Neovius M (2009) Discontinuation due to adverse events in randomized trials of orlistat, sibutramine and rimonabant: a meta-analysis. Obes Rev 10:564–575. https://doi.org/10.1111/j.1467-789X.2009.00581.x
doi: 10.1111/j.1467-789X.2009.00581.x pubmed: 19460116
Ghosh E, Kumari P, Jaiman D, Shukla AK (2015) Methodological advances: the unsung heroes of the GPCR structural revolution. Nat Rev Mol Cell Biol 16:69–81. https://doi.org/10.1038/nrm3933
doi: 10.1038/nrm3933 pubmed: 25589408
Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI et al (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165:1698–1707. https://doi.org/10.1016/j.cell.2016.05.040
doi: 10.1016/j.cell.2016.05.040 pubmed: 27238019
Shonberg J, Kling RC, Gmeiner P, Löber S (2015) GPCR crystal structures: medicinal chemistry in the pocket. Bioorg Med Chem 23:3880–3906. https://doi.org/10.1016/j.bmc.2014.12.034
doi: 10.1016/j.bmc.2014.12.034 pubmed: 25638496
Kooistra AJ, Mordalski S, Pandy-Szekeres G, Esguerra M, Mamyrbekov A, Munk C et al (2020) GPCRdb in 2021: integrating GPCR sequence, structure and function. Nucleic Acids Res 49:335–343. https://doi.org/10.1093/nar/gkaa1080
doi: 10.1093/nar/gkaa1080
Hua T, Vemuri K, Nikas SP, Laprairie RB, Wu Y, Qu L et al (2017) Crystal structures of agonist-bound human cannabinoid receptor CB1. Nature 547:468–471. https://doi.org/10.1038/nature23272
doi: 10.1038/nature23272 pubmed: 28678776
Wang X, Liu D, Shen L, Li F, Li Y, Yang L et al (2021) A genetically encoded F-19 NMR probe reveals the allosteric modulation mechanism of cannabinoid receptor 1. J Am Chem Soc 143:16320–16325. https://doi.org/10.1021/jacs.1c06847
doi: 10.1021/jacs.1c06847 pubmed: 34596399
Hua T, Vemuri K, Pu M, Qu L, Han GW, Wu Y et al (2016) Crystal structure of the human cannabinoid receptor CB1. Cell 167:750–762. https://doi.org/10.1016/j.cell.2016.10.004
doi: 10.1016/j.cell.2016.10.004 pubmed: 27768894
Shao Z, Yin J, Chapman K, Grzemska M, Clark L, Wang J et al (2016) High-resolution crystal structure of the human CB1 cannabinoid receptor. Nature 540:602–606. https://doi.org/10.1038/nature20613
doi: 10.1038/nature20613 pubmed: 27851727
Shao Z, Yan W, Chapman K, Ramesh K, Ferrell AJ, Yin J et al (2019) Structure of an allosteric modulator bound to the CB1 cannabinoid receptor. Nat Chem Biol 15:1199–1205. https://doi.org/10.1038/s41589-019-0387-2
doi: 10.1038/s41589-019-0387-2 pubmed: 31659318
Hua T, Li X, Wu L, Iliopoulos-Tsoutsouvas C, Wang Y, Wu M et al (2020) Activation and signaling mechanism revealed by cannabinoid receptor-Gi complex structures. Cell 180:655–665. https://doi.org/10.1016/j.cell.2020.01.008
doi: 10.1016/j.cell.2020.01.008 pubmed: 32004463
Krishna Kumar K, Robertson MJ, Thadhani E, Wang H, Suomivuori CM, Powers AS et al (2023) Structural basis for activation of CB1 by an endocannabinoid analog. Nat Commun 14:2672. https://doi.org/10.1038/s41467-023-37864-4
doi: 10.1038/s41467-023-37864-4 pubmed: 37160876
Krishna Kumar K, Shalev-Benami M, Robertson MJ, Hu H, Banister SD, Hollingsworth SA et al (2019) Structure of a signaling cannabinoid receptor 1-G protein complex. Cell 176:448–458. https://doi.org/10.1016/j.cell.2018.11.040
doi: 10.1016/j.cell.2018.11.040 pubmed: 30639101
Aviz-Amador A, Contreras-Puentes N, Mercado-Camargo J (2021) Virtual screening using docking and molecular dynamics of cannabinoid analogs against CB1 and CB2 receptors. Comput Biol Chem 95:107590. https://doi.org/10.1016/j.compbiolchem.2021.107590
doi: 10.1016/j.compbiolchem.2021.107590 pubmed: 34700256
Jung SW, Cho AE, Yu W (2018) Exploring the ligand efficacy of cannabinoid receptor 1 (CB1) using molecular dynamics simulations. Sci Rep 8:13787. https://doi.org/10.1038/s41598-018-31749-z
doi: 10.1038/s41598-018-31749-z pubmed: 30213978 pmcid: 6137198
Ji B, Liu S, He X, Man VH, Xie XQ, Wang J (2020) Prediction of the binding affinities and selectivity for CB1 and CB2 ligands using homology modeling, molecular docking, molecular dynamics simulations, and MM-PBSA binding free energy calculations. ACS Chem Neurosci 11:1139–1158. https://doi.org/10.1021/acschemneuro.9b00696
doi: 10.1021/acschemneuro.9b00696 pubmed: 32196303
Loo JSE, Yong AYY, Yong YN (2020) The effect of multiple simulation parameters on MM/PBSA performance for binding affinity prediction of CB1 cannabinoid receptor agonists and antagonists. Chem Biol Drug Des 97:1210. https://doi.org/10.1111/cbdd.13733
doi: 10.1111/cbdd.13733
Loo JSE, Emtage AL, Murali L, Lee SS, Kueh ALW, Alexander SPH (2019) Ligand discrimination during virtual screening of the CB1 cannabinoid receptor crystal structures following cross-docking and microsecond molecular dynamics simulations. RSC Adv 9:15949–15956. https://doi.org/10.1039/C9RA01095E
doi: 10.1039/C9RA01095E pubmed: 35521393 pmcid: 9064321
Yau MQ, Emtage AL, Chan NJY, Doughty SW, Loo JSE (2019) Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures. J Comput Aided Mol Des 33:487–496. https://doi.org/10.1007/s10822-019-00201-3
doi: 10.1007/s10822-019-00201-3 pubmed: 30989574
Wang E, Sun H, Wang J, Wang Z, Liu H, Zhang JZH, et al (2019) End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chem Rev 119:9478–9508. http://pubs.acs.org/doi/10.1021/acs.chemrev.9b00055
Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461. https://doi.org/10.1517/17460441.2015.1032936
doi: 10.1517/17460441.2015.1032936 pubmed: 25835573 pmcid: 4487606
Mongan J, Simmerling C, McCammon JA, Case DA, Onufriev A (2007) Generalized Born model with a simple, robust molecular volume correction. J Chem Theory Comput 3:156–169. https://doi.org/10.1021/ct600085e
doi: 10.1021/ct600085e pubmed: 21072141 pmcid: 2975579
Yau MQ, Loo JSE (2022) Consensus scoring evaluated using the GPCR-Bench dataset: reconsidering the role of MM/GBSA. J Comput Aided Mol Des 36:427–441. https://doi.org/10.1007/s10822-022-00456-3
doi: 10.1007/s10822-022-00456-3 pubmed: 35581483
Yau MQ, Emtage AL, Loo JSE (2020) Benchmarking the performance of MM/PBSA in virtual screening enrichment using the GPCR - Bench dataset. J Comput Aided Mol Des 34:1133–1145. https://doi.org/10.1007/s10822-020-00339-5
doi: 10.1007/s10822-020-00339-5 pubmed: 32851579
Rastelli G, Pinzi L (2019) Refinement and rescoring of virtual screening results. Front Chem 7:1–6. https://doi.org/10.3389/fchem.2019.00498
doi: 10.3389/fchem.2019.00498
Wang Z, Sun H, Shen C, Hu X, Gao J, Li D et al (2020) Combined strategies in structure-based virtual screening. Phys Chem Chem Phys 22:3149–3159. https://doi.org/10.1039/C9CP06303J
doi: 10.1039/C9CP06303J pubmed: 31995074
Poli G, Granchi C, Rizzolio F, Tuccinardi T (2020) Application of MM-PBSA methods in virtual screening. Molecules 25:1971. https://doi.org/10.3390/molecules25081971
doi: 10.3390/molecules25081971 pubmed: 32340232 pmcid: 7221544
Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods: I. The accuracy of binding free energy calculations based on molecular dynamics simulations. J Chem Inf Model 51:69–82. https://doi.org/10.1021/ci100275a
doi: 10.1021/ci100275a pubmed: 21117705
Gaulton A, Hersey A, Nowotka ML, Patricia Bento A, Chambers J, Mendez D et al (2017) The ChEMBL database in 2017. Nucleic Acids Res 45:945–954. https://doi.org/10.1093/nar/gkw1074
doi: 10.1093/nar/gkw1074
Schrödinger, LLC (2018) LigPrep. New York.
Rose PW, Prlić A, Bi C, Bluhm WF, Christie CH, Dutta S et al (2015) The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res 43:345–356. https://doi.org/10.1093/nar/gku1214
doi: 10.1093/nar/gku1214
Schrödinger, LLC (2018) Maestro. New York.
Shelley JC, Cholleti A, Frye LL, Greenwood JR, Timlin MR, Uchimaya M (2007) Epik: a software program for pKa prediction and protonation state generation for drug-like molecules. J Comput Aided Mol Des 21:681–691. https://doi.org/10.1007/s10822-007-9133-z
doi: 10.1007/s10822-007-9133-z pubmed: 17899391
Sherman W, Beard HS, Farid R (2006) Use of an induced fit receptor structure in virtual screening. Chem Biol Drug Des 67:83–84. https://doi.org/10.1111/j.1747-0285.2005.00327.x
doi: 10.1111/j.1747-0285.2005.00327.x pubmed: 16492153
Sherman W, Day T, Jacobson MP, Friesner RA, Farid R (2006) Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem 49:534–553. https://doi.org/10.1021/jm050540c
doi: 10.1021/jm050540c pubmed: 16420040
Abraham MJ, Hess B, van der Spoel D, Lindahl E (2018) GROMACS User Manual version 2018. Royal Institute of Technology and Uppsala University.
Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins: Structure. Function and Bioinformatics 78:1950–1958. https://doi.org/10.1002/prot.22711
doi: 10.1002/prot.22711
Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comput Chem 25:1157–1174. https://doi.org/10.1002/jcc.20035
doi: 10.1002/jcc.20035 pubmed: 15116359
Jämbeck JPM, Lyubartsev AP (2012) Derivation and systematic validation of a refined all-atom force field for phosphatidylcholine lipids. J Phys Chem B 116:3164–3179. https://doi.org/10.1021/jp212503e
doi: 10.1021/jp212503e pubmed: 22352995 pmcid: 3320744
Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation J Comput Chem 23:1623–1641. https://doi.org/10.1002/jcc.10128
doi: 10.1002/jcc.10128 pubmed: 12395429
Sousa da Silva AW, Vranken WF (2012) ACPYPE - AnteChamber PYthon Parser interfacE. BMC Res Notes 5:367. https://doi.org/10.1186/1756-0500-5-367
doi: 10.1186/1756-0500-5-367 pubmed: 22824207 pmcid: 3461484
Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397
doi: 10.1063/1.464397
Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12/3C1463::AID-JCC4/3E3.0.CO;2-H
doi: 10.1002/(SICI)1096-987X(199709)18:12/3C1463::AID-JCC4/3E3.0.CO;2-H
Hess B (2008) P-LINCS: A parallel linear constraint solver for molecular simulation. J Chem Theory Comput 4:116–122. https://doi.org/10.1021/ct700200b
doi: 10.1021/ct700200b pubmed: 26619985
Nugent T, Jones DT (2013) Membrane protein orientation and refinement using a knowledge-based statistical potential. BMC Bioinformatics 14:276. https://doi.org/10.1186/1471-2105-14-276
doi: 10.1186/1471-2105-14-276 pubmed: 24047460 pmcid: 3852961
Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM et al (2014) CHARMM-GUI membrane builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004. https://doi.org/10.1002/jcc.23702
doi: 10.1002/jcc.23702 pubmed: 25130509
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935. https://doi.org/10.1063/1.445869
doi: 10.1063/1.445869
Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690. https://doi.org/10.1063/1.448118
doi: 10.1063/1.448118
Nosé S, Klein ML (1983) Constant pressure molecular dynamics for molecular systems. Mol Phys: Int J Int Between Chem Phys 50:1055–1076. https://doi.org/10.1080/00268978300102851
doi: 10.1080/00268978300102851
Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity-rescaling. J Chem Phys 126:1–8. https://doi.org/10.1063/1.2408420
doi: 10.1063/1.2408420
Valdés-Tresanco MS, Valdés-Tresanco ME, Valiente PA, Moreno E (2021) gmx_MMPBSA: a new tool to perform end-state free energy calculations with GROMACS. J Chem Theory Comput 17:6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
doi: 10.1021/acs.jctc.1c00645 pubmed: 34586825
Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins: Structure. Function and Genetics 55:383–394. https://doi.org/10.1002/prot.20033
doi: 10.1002/prot.20033
Hawkins GD, Cramer CJ, Truhlar DG (1995) Pairwise solute descreening of solute charges from a dielectric medium. Chem Phys Lett 246:122–129. https://doi.org/10.1016/0009-2614(95)01082-K
doi: 10.1016/0009-2614(95)01082-K
Nguyen H, Roe DR, Simmerling C (2013) Improved generalized born solvent model parameters for protein simulations. J Chem Theory Comput 9:2020–2034. https://doi.org/10.1021/ct3010485
doi: 10.1021/ct3010485 pubmed: 25788871 pmcid: 4361090
Kashefolgheta S, Wang S, Acree WE, Hünenberger PH (2021) Evaluation of nine condensed-phase force fields of the GROMOS, CHARMM, OPLS, AMBER, and OpenFF families against experimental cross-solvation free energies. Phys Chem Chem Phys 23:13055–13074. https://doi.org/10.1039/D1CP00215E
doi: 10.1039/D1CP00215E pubmed: 34105547 pmcid: 8207520
Shivakumar D, Williams J, Wu Y, Damm W, Shelley J, Sherman W (2010) Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput 6:1509–1519. https://doi.org/10.1021/ct900587b
doi: 10.1021/ct900587b pubmed: 26615687
Sun H, Li Y, Shen M, Tian S, Xu L, Pan P et al (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance by using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Phys Chem Chem Phys 16:22035–22045. https://doi.org/10.1039/C4CP03179B
doi: 10.1039/C4CP03179B pubmed: 25205360
Hou T, Wang J, Li Y, Wang W (2011) Assessing the performance of the MM/PBSA and MM/GBSA methods: II. The accuracy of ranking poses generated from docking. J Comput Chem 32:866–877. https://doi.org/10.1002/2Fjcc.21666
Sun H, Li Y, Tian S, Xu L, Hou T (2014) Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys 16:16719. https://doi.org/10.1039/C4CP01388C
Yang T, Wu JC, Yan C, Wang Y, Luo R, Gonzales MB et al (2011) Virtual screening using molecular simulations. Proteins 79:1940–1951. https://doi.org/10.1002/prot.23018
doi: 10.1002/prot.23018 pubmed: 21491494 pmcid: 3092865
Chéron N, Shakhnovich EI (2017) Effect of sampling on BACE-1 ligands binding free energy predictions via MM-PBSA calculations. J Comput Chem 38:1941–1951. https://doi.org/10.1002/jcc.24839
doi: 10.1002/jcc.24839 pubmed: 28568844
Zhang X, Perez-Sanchez H, Lightstone FC (2017) A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem 17:1631–1639. https://doi.org/10.2174/1568026616666161117112604
doi: 10.2174/1568026616666161117112604 pubmed: 27852201 pmcid: 5403970
Rastelli G, Del RA, Degliesposti G, Sgobba M (2010) Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. J Comput Chem 31:797–810. https://doi.org/10.1002/jcc.21372
doi: 10.1002/jcc.21372 pubmed: 19569205
Guimarães CRW (2011) A direct comparison of the MM-GB/SA scoring procedure and free-energy perturbation calculations using carbonic anhydrase as a test case: strengths and pitfalls of each approach. J Chem Theory Comput 7:2296–22306. https://doi.org/10.1021/ct200244p
doi: 10.1021/ct200244p pubmed: 26606497
Mikulskis P, Genheden S, Rydberg P, Sandberg L, Olsen L, Ryde U (2012) Binding affinities in the SAMPL3 trypsin and host-guest blind tests estimated with the MM/PBSA and LIE methods. J Comput Aided Mol Des 26:527–541. https://doi.org/10.1007/s10822-011-9524-z
doi: 10.1007/s10822-011-9524-z pubmed: 22198518
Li Y, Cong Y, Feng G, Zhong S, Zhang JZH, Sun H et al (2018) The impact of interior dielectric constant and entropic change on HIV-1 complex binding free energy prediction. Structural Dynamics 5:1–22. https://doi.org/10.1063/1.5058172
doi: 10.1063/1.5058172
Genheden S, Kuhn O, Mikulskis P, Hoffmann D, Ryde U (2012) The normal-mode entropy in the MM/GBSA method: effect of system truncation, buffer region, and dielectric constant. J Chem Inf Model 52:2079–2088. https://doi.org/10.1021/ci3001919
doi: 10.1021/ci3001919 pubmed: 22817270
Sheng YJ, Yin YW, Ma YQ, Ding HM (2021) Improving the performance of MM/PBSA in protein-protein interactions via the screening electrostatic energy. J Chem Inf Model 61:2454–2462. https://doi.org/10.1021/acs.jcim.1c00410
doi: 10.1021/acs.jcim.1c00410 pubmed: 33939423
Liu X, Peng L, Zhang JZH (2019) Accurate and efficient calculation of protein-protein binding free energy-interaction entropy with residue type-specific dielectric constants. J Chem Inf Model 59:272–281. https://doi.org/10.1021/acs.jcim.8b00248
doi: 10.1021/acs.jcim.8b00248 pubmed: 30431271
Duan L, Liu X, Zhang JZH (2016) Interaction entropy: a new paradigm for highly efficient and reliable computation of protein-ligand binding free energy. J Am Chem Soc 138:5722–5728. https://doi.org/10.1021/jacs.6b02682
doi: 10.1021/jacs.6b02682 pubmed: 27058988
Suárez D, Díaz N (2019) Affinity calculations of cyclodextrin host-guest complexes: assessment of strengths and weaknesses of end-point free energy methods. J Chem Inf Model 59:421–440. https://doi.org/10.1021/acs.jcim.8b00805
doi: 10.1021/acs.jcim.8b00805 pubmed: 30566348
Zeller F, Zacharias M (2014) Evaluation of generalized born model accuracy for absolute binding free energy calculations. J Phys Chem B 118:7467–7474. https://doi.org/10.1021/jp5015934
doi: 10.1021/jp5015934 pubmed: 24941018
Izadi S, Harris RC, Fenley MO, Onufriev AV (2018) Accuracy comparison of generalized born models in the calculation of electrostatic binding free energies. J Chem Theory Comput 14:1656–1670. https://doi.org/10.1021/acs.jctc.7b00886
doi: 10.1021/acs.jctc.7b00886 pubmed: 29378399
Su PC, Tsai CC, Mehboob S, Hevener KE, Johnson ME (2015) Comparison of radii sets, entropy, QM methods, and sampling on MM-PBSA, MM-GBSA, and QM/MM-GBSA ligand binding energies of F. tularensis enoyl-ACP reductase (FabI). J Comput Chem 36:1859–1873. https://doi.org/10.1002/jcc.24011
doi: 10.1002/jcc.24011 pubmed: 26216222
Shell MS, Ritterson R, Dill KA (2008) A test on peptide stability of AMBER force fields with implicit solvation. J Phys Chem B 112:6878–6886. https://doi.org/10.1021/jp800282x
doi: 10.1021/jp800282x pubmed: 18471007

Auteurs

Mei Qian Yau (MQ)

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia. MeiQian.Yau@taylors.edu.my.
Digital Health and Medical Advancement Impact Lab, Taylor's University, No. 1 Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia. MeiQian.Yau@taylors.edu.my.

Clarence W Y Liew (CWY)

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia.

Jing Hen Toh (JH)

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia.

Jason S E Loo (JSE)

School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia.
Digital Health and Medical Advancement Impact Lab, Taylor's University, No. 1 Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH