Dual-mode electrochemical and electrochemiluminescence detection of dopamine based on perylene diimide self-assembly material.

Dopamine Dual-mode detection Electrochemical and electrochemiluminescence sensors Modified glassy carbon electrode Perylene diimide Self-assembling

Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
31 10 2024
Historique:
received: 22 06 2024
accepted: 10 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 31 10 2024
Statut: epublish

Résumé

The self-assembly material N,N-bis-(3-dimethyl aminopropyl)-3,4,9,10-perylene tetracarboxylic acid diimide (PDI) is reported to show electrochemical (EC)/electrochemiluminescence (ECL) property for designing new dual-mode dopamine (DA) sensors. K

Identifiants

pubmed: 39480545
doi: 10.1007/s00604-024-06768-5
pii: 10.1007/s00604-024-06768-5
doi:

Substances chimiques

Perylene 5QD5427UN7
Dopamine VTD58H1Z2X
Imides 0
perylenediimide 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

721

Subventions

Organisme : Natural Science Foundation of Shandong Province
ID : ZR2017BB084
Organisme : Natural Science Foundation of Shandong Province
ID : ZR2021QB080
Organisme : Natural Science Foundation of Shandong Province
ID : ZR2020MB061
Organisme : National Natural Science Foundation of China
ID : 21804063
Organisme : National Natural Science Foundation of China
ID : 21427808

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Lan Y, Yuan F, Fereja TH, Wang C, Lou B, Li J et al (2019) Chemiluminescence of Lucigenin/Riboflavin and its application for selective and sensitive dopamine detection. Anal Chem 91:2135–2139
pubmed: 30582677 doi: 10.1021/acs.analchem.8b04670
He W, Liu R, Zhou P, Liu Q, Cui T (2020) Flexible micro-sensors with self-assembled graphene on a polyolefin substrate for dopamine detection. Biosens Bioelectron 167:112473
pubmed: 32846270 doi: 10.1016/j.bios.2020.112473
Zhao L, Ji J, Shen Y, Wu K, Zhao T, Yang H et al (2019) Exfoliation and sensitization of 2D carbon nitride for photoelectrochemical biosensing under red light. Chem- Eur J 25:15680–15686
pubmed: 31568592 doi: 10.1002/chem.201904076
Kong W, Zhu D, Luo R, Yu S, Ju H (2022) Framework-promoted charge transfer for highly selective photoelectrochemical biosensing of dopamine. Biosens Bioelectron 211:114369
pubmed: 35594626 doi: 10.1016/j.bios.2022.114369
Zhu C, Hong Q, Wang K, Shen Y, Liu S, Zhang Y (2024) Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chin Chem Lett 35:109560
doi: 10.1016/j.cclet.2024.109560
Wei S, Liu B, Shi X, Cui S, Zhang H, Lu P et al (2023) Gadolinium (III) doped carbon dots as dual-mode sensor for the recognition of dopamine hydrochloride and glutamate enantiomers with logic gate operation. Talanta 252:123865
pubmed: 36081308 doi: 10.1016/j.talanta.2022.123865
Cheng M, Zhang J, Huang T, Qin L, Dong H, Liao F et al (2024) A dual-mode sensor platform with adjustable electrochemiluminescence-fluorescence for selective detection of paraquat pesticide. Food Chem 430:137030
pubmed: 37523820 doi: 10.1016/j.foodchem.2023.137030
Zhang D, Du P, Chen J, Guo H, Lu X (2021) Pyrazolate-based porphyrinic metal-organic frameworks as catechol oxidase mimic enzyme for fluorescent and colorimetric dual-mode detection of dopamine with high sensitivity and specificity. Sens Actuat B-Chem 341:130000
doi: 10.1016/j.snb.2021.130000
Yi H, Ran J, Tan Y, Wang Z, Liu B (2024) A colorimetric/electrochemical sensor based on coral-like CuCo2O4@AuNPs composites for sensitive dopamine detection. Anal Bioanal Chem 416:265–276
pubmed: 37957328 doi: 10.1007/s00216-023-05014-w
Gao F, Liu L, Cui G, Xu L, Wu X, Kuang H et al (2017) Regioselective plasmonic nano-assemblies for bimodal sub-femtomolar dopamine detection. Nanoscale 9:223–229
pubmed: 27906395 doi: 10.1039/C6NR08264E
Lu L, Zhou Y, Zheng T, Tian Y (2023) SERS and EC dual-mode detection for dopamine based on WO3-SnO2 nanoflake arrays. Nano Res 16:4049–4054
doi: 10.1007/s12274-022-4984-0
Yi J, Chen X, Lin J, Song K, Han Z, Chen J (2022) Dual-mode detection of dopamine based on 0D/2D/2D CuInS2/ZnS quantum dot–black phosphorous nanosheet–TiO2 nanosheet nanocomposites. Anal Bioanal Chem 414:1829–1839
pubmed: 34988590 doi: 10.1007/s00216-021-03812-8
Cui L, Zhu C-y, Hu J, Meng X-m, Jiang M, Gao W et al (2023) Construction of a dual-mode biosensor for electrochemiluminescent and electrochemical sensing of alkaline phosphatase. Sens Actuat B-Chem 374:132779
doi: 10.1016/j.snb.2022.132779
Wang R, Lan K, Lin R, Jing X, Hung C-T, Zhang X et al (2021) Precisely controlled vertical alignment in mesostructured carbon thin films for efficient electrochemical sensing. ACS Nano 15:7713–7721
pubmed: 33821624 doi: 10.1021/acsnano.1c01367
Fu X, Feng J, Tan X, Lu Q, Yuan R, Chen S (2015) Electrochemiluminescence sensor for dopamine with a dual molecular recognition strategy based on graphite-like carbon nitride nanosheets/3,4,9,10-perylenetetracarboxylic acid hybrids. RSC Adv 5:42698–42704
doi: 10.1039/C5RA03154K
Zuo F, Jin L, Fu X, Zhang H, Yuan R, Chen S (2017) An electrochemiluminescent sensor for dopamine detection based on a dual-molecule recognition strategy and polyaniline quenching. Sens Actuat B- Chem 244:282–289
doi: 10.1016/j.snb.2017.01.001
Fan X, Sun N, Wang S, Xu M, Zuo C, Xu X et al (2022) A label-free electrochemiluminescence sensing for detection of dopamine based on TiO2 electrospun nanofibers. Electroanal 34:122–129
doi: 10.1002/elan.202100502
Ning H, Liu F, Zhang T, Zhao Y, Li Y, Zhao Z et al (2022) A signal-amplification electrochemiluminescence sensor based on layer-by-layer assembly of perylene diimide derivatives for dopamine detection at low potential. Anal Chim Acta 1214:339963
pubmed: 35649641 doi: 10.1016/j.aca.2022.339963
Li J, Jiang J, Su Y, Liang Y, Zhang C (2021) A novel cloth-based supersandwich electrochemical aptasensor for direct, sensitive detection of pathogens. Anal Chim Acta 1188:339176
pubmed: 34794578 doi: 10.1016/j.aca.2021.339176
Qiu H, Yin X, Yan J, Zhao X, Yang X, Wang E (2005) Simultaneous electrochemical and electrochemiluminescence detection for microchip and conventional capillary electrophoresis. Electrophoresis 26:687–693
pubmed: 15690421 doi: 10.1002/elps.200410015
Jiang M, Wang M, Song X, Lai W, Zhao C, Li J et al (2023) Dual-functional nanomaterials Polyo-Phenylenediamine and Ru–Au complement each other to Construct an Electrochemical and Electrochemiluminescent Dual-Mode Aptamer Sensor for Sensitive Detection of Alternariol. Anal Chem 95:12459–12469
pubmed: 37566460 doi: 10.1021/acs.analchem.3c02119
Li J, Wang C, Wang W, Zhao L, Han H (2022) Dual-Mode Immunosensor for Electrochemiluminescence Resonance Energy Transfer and Electrochemical detection of rabies virus glycoprotein based on Ru(bpy)32+-Loaded dendritic mesoporous silica nanoparticles. Anal Chem 94:7655–7664
pubmed: 35579617 doi: 10.1021/acs.analchem.2c00954
Gong J, Zhang T, Chen P, Yan F, Liu J (2022) Bipolar silica nanochannel array for dual-mode electrochemiluminescence and electrochemical immunosensing platform. Sens Actuat B-Chem 368:132086
doi: 10.1016/j.snb.2022.132086
Penty SE, Zwijnenburg MA, Orton GRF, Stachelek P, Pal R, Xie Y et al (2022) The Pink Box: exclusive homochiral aromatic stacking in a Bis-Perylene Diimide Macrocycle. J Am Chem Soc 144:12290–12298
pubmed: 35763425 pmcid: 9348826 doi: 10.1021/jacs.2c03531
Lee SK, Zu Y, Herrmann A, Geerts Y, Müllen K, Bard AJ (1999) Electrochemistry, spectroscopy and electrogenerated chemiluminescence of perylene, terrylene, and quaterrylene diimides in aprotic solution. J Am Chem Soc 121:3513–3520
doi: 10.1021/ja984188m
Williams ME, Murray RW (1998) Perylene polyether hybrids: highly soluble, luminescent, redox-active dyes. Chem Mater 10:3603–3610
doi: 10.1021/cm980366z
Zhang W, Gan S, Vezzoli A, Davidson RJ, Milan DC, Luzyanin KV et al (2016) Single-molecule conductance of Viologen–Cucurbit[8]uril host–guest complexes. ACS Nano 10:5212–5220
pubmed: 27055002 doi: 10.1021/acsnano.6b00786
Zhang H, Li B, Wang R, Miao Q, Cui X, Shang L et al (2023) Perylene derivative and persulfate as highly efficient electrochemical system for constructing sensitive amperometric aptasensor. Talanta 259:124489
pubmed: 37003182 doi: 10.1016/j.talanta.2023.124489
Lei Y-M, Huang W-X, Zhao M, Chai Y-Q, Yuan R, Zhuo Y (2015) Electrochemiluminescence resonance energy transfer system: mechanism and application in ratiometric aptasensor for lead Ion. Anal Chem 87:7787–7794
pubmed: 26153718 doi: 10.1021/acs.analchem.5b01445
Cortés MT, Vargas C, Blanco DA, Quinchanegua ID, Cortés C, Jaramillo AM (2019) Bioinspired Polydopamine synthesis and its Electrochemical characterization. J Chem Educ 96:1250–1255
doi: 10.1021/acs.jchemed.8b00432
Xue H, Zhao J, Zhou Q, Pan D, Zhang Y, Zhang Y et al (2019) Boosting the sensitivity of a Photoelectrochemical Immunoassay by using SiO2@polydopamine core–Shell nanoparticles as a highly efficient quencher. ACS Appl Nano Mater 2:1579–1588
doi: 10.1021/acsanm.9b00050
Song Y, Zhang W, He S, Shang L, Ma R, Jia L et al (2019) Perylene Diimide and Luminol as potential-resolved Electrochemiluminescence Nanoprobes for dual targets immunoassay at Low Potential. ACS Appl Mater Inter 11:33676–33683
doi: 10.1021/acsami.9b11416
Hu Y, Wang K, Zhang Q, Li F, Wu T, Niu L (2012) Decorated graphene sheets for label-free DNA impedance biosensing. Biomaterials 33:1097–1106
pubmed: 22061487 doi: 10.1016/j.biomaterials.2011.10.045
Mohan Nalluri SK, Zhou J, Cheng T, Liu Z, Nguyen MT, Chen T et al (2019) Discrete dimers of redox-active and fluorescent perylene diimide-based rigid Isosceles triangles in the solid state. J Am Chem Soc 141:1290–1303
pubmed: 30537816 doi: 10.1021/jacs.8b11201
Feng W, Jiang Q, Wang Z, Zang J, Wang G, Liu K et al (2022) Rigid Bay-Conjugated Perylene Bisimide rotors: Solvent-Induced excited-state symmetry breaking and resonance-enhanced two-photon absorption. J Phys Chem B 126:4939–4947
pubmed: 35754397 doi: 10.1021/acs.jpcb.2c02620
Wang B, Yu C (2010) Fluorescence Turn-On detection of a protein through the reduced aggregation of a Perylene Probe. Angew Chem Int Edit 49:1485–1488
doi: 10.1002/anie.200905237
Hu Y, Han D, Zhang Q, Wu T, Li F, Niu L (2012) Perylene ligand wrapping G-quadruplex DNA for label-free fluorescence potassium recognition. Biosens Bioelectron 38:396–401
pubmed: 22794931 doi: 10.1016/j.bios.2012.06.042
Wagner W, Wehner M, Stepanenko V, Würthner F (2019) Supramolecular Block copolymers by Seeded Living polymerization of Perylene Bisimides. J Am Chem Soc 141:12044–12054
pubmed: 31304748 doi: 10.1021/jacs.9b04935
Zhang X, Shi L, Yao L, Cui L (2022) The boosted photocatalytic activity over perylene diimide modified Bi2O4 hybrid photocatalyst with internal electric field. Mater Res Bull 146:111589
doi: 10.1016/j.materresbull.2021.111589
Yang J, Miao H, Wei Y, Li W, Zhu Y (2019) π–π Interaction between self-assembled perylene diimide and 3D graphene for excellent visible-light photocatalytic activity. Appl Catal B-Environ 240:225–233
doi: 10.1016/j.apcatb.2018.09.003
Datar A, Balakrishnan K, Zang L (2013) One-dimensional self-assembly of a water soluble perylene diimide molecule by pH triggered hydrogelation. Chem Commun 49:6894–6896
doi: 10.1039/c3cc43359e
Ogawa T, Kuwamoto K, Isoda S, Kobayashi T, Karl N (1999) 3,4,9,10-Perylenetetracarboxylic dianhydride (PTCDA) by electron crystallography. Acta Cryst B55:123–130
doi: 10.1107/S0108768198009872
Li Y, Hou J, Zhou H, Jia M, Chen S, Huang H et al (2020) A fluorescence sensor array based on perylene probe monomer-excimer emission transition for the highly efficient differential sensing of metal ions and drinking waters. Sens Actuat B-Chem 319:128212
doi: 10.1016/j.snb.2020.128212
He S, Wang X, Xiang G, Lac K, Wang S, Ding Z (2018) Electrogenerated chemiluminescence from the monomer of a tetradentate chelate pt(II) compound. Electrochim Acta 271:448–453
doi: 10.1016/j.electacta.2018.03.056
Xiang G, Wang X, Li MSM, Lac K, Wang S, Ding Z (2017) Probing Excimers of Pt(II) Compounds with Phenyl-1,2,3-Triazolyl and Pyridyl-1,2,4-Triazolyl Chelate Ligands by Means of Electrochemiluminescence. ChemElectroChem 4:1757–1762
doi: 10.1002/celc.201700059
Würthner F, Saha-Möller CR, Fimmel B, Ogi S, Leowanawat P, Schmidt D (2016) Perylene bisimide dye assemblies as archetype functional supramolecular materials. Chem Rev 116:962–1052
pubmed: 26270260 doi: 10.1021/acs.chemrev.5b00188
Yagai S, Seki T, Karatsu T, Kitamura A, Würthner F (2008) Transformation from H- to J-Aggregated Perylene Bisimide dyes by Complexation with Cyanurates. Angew Chem Int Edit 47:3367–3371
doi: 10.1002/anie.200705385
Cui X, Geng H, Zhang H, Sun X, Shang L, Ma R et al (2024) A perylene diimide electrochemical probe with persulfate as a signal enhancer for dopamine sensing. Analyst 149:917–924
pubmed: 38190154 doi: 10.1039/D3AN01966G
Lu Q, Zhang J, Wu Y, Yuan R, Chen S (2015) Cathodic electrochemiluminescence behavior of an ammonolysis product of 3,4,9,10-perylenetetracarboxylic dianhydride in aqueous solution and its application for detecting dopamine. RSC Adv 5:22289–22293
doi: 10.1039/C4RA16387G

Auteurs

Wei Zhang (W)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China.

Hong Zhang (H)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China.

Chuan Li (C)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China. chuanli@lcu.edu.cn.

Lei Shang (L)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China.

Rongna Ma (R)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China.

Liping Jia (L)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China.

Xiaojian Li (X)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China.

Bo Li (B)

Department of Gastrointestinal Surgery, Shandong Provincial Third Hospital, Shandong University, Jinan, 250031, Shandong, China. liboyisheng1991@163.com.

Huaisheng Wang (H)

Chemistry of Department, Liaocheng University, Liaocheng, 252059, Shandong, China. hswang@lcu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH