Ononin delays the development of osteoarthritis by down-regulating MAPK and NF-κB pathways in rat models.
Animals
Osteoarthritis
/ metabolism
Rats
NF-kappa B
/ metabolism
Male
Disease Models, Animal
Rats, Sprague-Dawley
Down-Regulation
/ drug effects
Isoflavones
/ pharmacology
Molecular Docking Simulation
Signal Transduction
/ drug effects
MAP Kinase Signaling System
/ drug effects
Mitogen-Activated Protein Kinases
/ metabolism
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2024
2024
Historique:
received:
15
12
2023
accepted:
27
08
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
Osteoarthritis (OA) is featured as cartilage loss, joint pain and loss of labor, which the inflammatory reaction may play critical roles. Ononin is an isoflavone isolating from medicinal plants and has anti-inflammatory effects. Our study investigated the anti-inflammation response of ononin on OA. Anterior cruciate ligament transection (ACLT)-induced OA operation was used to establish research model, then treated with ononin for 8 weeks. The condition of joint injury was assessed using pathological staining. The concentration of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in serum were measured by Elisa kit. The expression of collagen II and matrix metalloproteinase 13 (MMP-13) proteins to assess cartilage metabolism level by immunohistochemistry and Western blot. We detected the expression of proteins involved in the MAPK and NF-κB signaling pathways. Finally, we used molecular docking to assess the affinity of ononin for the target proteins ERK1/2, JNK1/2, p38 and p65. Our results confirmed that ononin ameliorated cartilage impairment through histopathological analysis by improving the morphological structures and cartilage tidal lines and decreasing Osteoarthritis Research Society International (OARSI) scores in OA rats. Moreover, ononin inhibited the secretion of above factors in OA rats. Furthermore, ononin has been shown to improve cartilage content levels in OA rats. In addition, ononin inhibited the reactivity of MAPK and NF-κB pathways in OA rats. And molecular docking indicated the ligand molecules could stably bind to the proteins of above receptors. Our results demonstrated that ononin may ameliorate cartilage damage and inflammatory response in OA rats by downgrading MAPK and NF-κB pathways, thus identifying ononin as a potential novel drug to treat OA.
Sections du résumé
BACKGROUND
BACKGROUND
Osteoarthritis (OA) is featured as cartilage loss, joint pain and loss of labor, which the inflammatory reaction may play critical roles. Ononin is an isoflavone isolating from medicinal plants and has anti-inflammatory effects. Our study investigated the anti-inflammation response of ononin on OA.
METHODS
METHODS
Anterior cruciate ligament transection (ACLT)-induced OA operation was used to establish research model, then treated with ononin for 8 weeks. The condition of joint injury was assessed using pathological staining. The concentration of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in serum were measured by Elisa kit. The expression of collagen II and matrix metalloproteinase 13 (MMP-13) proteins to assess cartilage metabolism level by immunohistochemistry and Western blot. We detected the expression of proteins involved in the MAPK and NF-κB signaling pathways. Finally, we used molecular docking to assess the affinity of ononin for the target proteins ERK1/2, JNK1/2, p38 and p65.
RESULTS
RESULTS
Our results confirmed that ononin ameliorated cartilage impairment through histopathological analysis by improving the morphological structures and cartilage tidal lines and decreasing Osteoarthritis Research Society International (OARSI) scores in OA rats. Moreover, ononin inhibited the secretion of above factors in OA rats. Furthermore, ononin has been shown to improve cartilage content levels in OA rats. In addition, ononin inhibited the reactivity of MAPK and NF-κB pathways in OA rats. And molecular docking indicated the ligand molecules could stably bind to the proteins of above receptors.
CONCLUSION
CONCLUSIONS
Our results demonstrated that ononin may ameliorate cartilage damage and inflammatory response in OA rats by downgrading MAPK and NF-κB pathways, thus identifying ononin as a potential novel drug to treat OA.
Identifiants
pubmed: 39480787
doi: 10.1371/journal.pone.0310293
pii: PONE-D-23-41214
doi:
Substances chimiques
NF-kappa B
0
Isoflavones
0
Mitogen-Activated Protein Kinases
EC 2.7.11.24
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0310293Informations de copyright
Copyright: © 2024 Xu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.