Detection, classification, and characterization of proximal humerus fractures on plain radiographs.
Journal
The bone & joint journal
ISSN: 2049-4408
Titre abrégé: Bone Joint J
Pays: England
ID NLM: 101599229
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
31
10
2024
Statut:
epublish
Résumé
The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs. The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%). For detection and classification, the algorithm was trained on 1,709 radiographs (n = 803), tested on 567 radiographs (n = 244), and subsequently externally validated on 535 radiographs (n = 227). For characterization, healthy shoulders and glenohumeral dislocation were excluded. The overall accuracy for fracture detection was 94% (area under the receiver operating characteristic curve (AUC) = 0.98) and for classification 78% (AUC 0.68 to 0.93). Accuracy to detect greater tuberosity fracture displacement ≥ 1 cm was 35.0% (AUC 0.57). The CNN did not recognize NSAs ≤ 100° (AUC 0.42), nor fractures with ≥ 75% shaft translation (AUC 0.51 to 0.53), or with ≥ 15% articular involvement (AUC 0.48 to 0.49). For all objectives, the model's performance on the external dataset showed similar accuracy levels. CNNs proficiently rule out proximal humerus fractures on plain radiographs. Despite rigorous training methodology based on CT imaging with multi-rater consensus to serve as the reference standard, artificial intelligence-driven classification is insufficient for clinical implementation. The CNN exhibited poor diagnostic ability to detect greater tuberosity displacement ≥ 1 cm and failed to identify NSAs ≤ 100°, shaft translations, or articular fractures.
Identifiants
pubmed: 39481431
doi: 10.1302/0301-620X.106B11.BJJ-2024-0264.R1
pii: BJJ-2024-0264.R1
doi:
Types de publication
Journal Article
Multicenter Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
1348-1360Subventions
Organisme : Flinders Foundation
Informations de copyright
© 2024 The British Editorial Society of Bone & Joint Surgery.
Déclaration de conflit d'intérêts
R. W. A. Spek received payments of an amount between USD 10,000 and USD 100,000 from the Flinders Foundation (Adelaide, Australia) for the purpose of this study. During the study period, R. W. A. Spek received payments of an amount between USD 10,000 and USD 100,000 from Prins Bernhard Cultuurfonds (Amsterdam, the Netherlands), Stichting Zabawas (The Hague, The Netherlands), and with an amount of less than USD 10,000 from Michael van Vloten Foundation (Rotterdam, The Netherlands) and Anna Fonds NOREF (Mijdrecht, the Netherlands), all of which were unrelated to this specific study. B. Jadav provided paid consultations for Johnson & Johnson, unrelated to the current study. G. I. Bain received a Flinders Foundation grant for this study, paid to Flinders University, as well as royalties or licenses from Fusetec, stock or stock options in Fusetec, and speaker payments or honoraria from Depuy Synthes and Medartis, none of which are related to this study. G. I. Bain also holds fiduciary roles in the Australian Hand Surgery Society, the Shoulder and Elbow Society of Australia, the Asia Pacific Wrist Association, the International Federation for the Societies for Surgery of the Hand, and the Journal of Wrist Surgery. J. L. Jaarsma is an unpaid executive of the Australian Orthopaedic Association. B. Jadav received a one-off consultation payment and payment for teaching courses from Johnson & Johnson, unrelated to this study. M. P. J. van den Bekerom receives fellowship support from Smith & Nephew, which contributed to this study.
Références
Murray IR , Amin AK , White TO , Robinson CM . Proximal humeral fractures: Current concepts in classification, treatment and outcomes . J Bone Joint Surg Br . 2011 ; 93-B ( 1 ): 1 – 11 . 10.1302/0301-620X.93B1.25702 21196536
Boileau P , d’Ollonne T , Bessière C , et al. Displaced humeral surgical neck fractures: Classification and results of third-generation percutaneous intramedullary nailing . J Shoulder Elbow Surg . 2019 ; 28 ( 2 ): 276 – 287 . 10.1016/j.jse.2018.07.010 30429058
Neer CS . Displaced proximal humeral fractures: Part I. Classification and evaluation. 1970 . Clin Orthop Relat Res . 2006 ; 442 : 77 – 82 . 10.1097/01.blo.0000198718.91223.ca 16394743
Hertel R , Hempfing A , Stiehler M , Leunig M . Predictors of humeral head ischemia after intracapsular fracture of the proximal humerus . J Shoulder Elbow Surg . 2004 ; 13 ( 4 ): 427 – 433 . 10.1016/j.jse.2004.01.034 15220884
Meinberg EG , Agel J , Roberts CS , Karam MD , Kellam JF . Fracture and dislocation classification compendium-2018 . J Orthop Trauma . 2018 ; 32 Suppl 1 : S1 – S170 . 10.1097/BOT.0000000000001063 29256945
Chelli M , Gasbarro G , Lavoué V , et al. The reliability of the Neer classification for proximal humerus fractures: a survey of orthopedic shoulder surgeons . JSES Int . 2022 ; 6 ( 3 ): 331 – 337 . 10.1016/j.jseint.2022.02.006 35572425
Iordens GIT , Mahabier KC , Buisman FE , et al. The reliability and reproducibility of the Hertel classification for comminuted proximal humeral fractures compared with the neer classification . J Orthop Sci . 2016 ; 21 ( 5 ): 596 – 602 . 10.1016/j.jos.2016.05.011 27324664
Bruinsma WE , Guitton TG , Warner JJP , Ring D , Science of Variation Group . Interobserver reliability of classification and characterization of proximal humeral fractures: a comparison of two and three-dimensional CT . J Bone Joint Surg Am . 2013 ; 95-A ( 17 ): 1600 – 1604 . 10.2106/JBJS.L.00586 24005201
Spek RWA , Schoolmeesters BJA , Oosterhoff JHF , et al. 3D-printed handheld models do not improve recognition of specific characteristics and patterns of three-part and four-part proximal humerus fractures . Clin Orthop Relat Res . 2022 ; 480 ( 1 ): 150 – 159 . 10.1097/CORR.0000000000001921 34427569
Lång K , Josefsson V , Larsson A-M , et al. Artificial intelligence-supported screen reading versus standard double reading in the mammography screening with artificial intelligence trial (MASAI): a clinical safety analysis of a randomised, controlled, non-inferiority, single-blinded, screening accuracy study . Lancet Oncol . 2023 ; 24 ( 8 ): 936 – 944 . 10.1016/S1470-2045(23)00298-X 37541274
Yang S , Zhu F , Ling X , Liu Q , Zhao P . Intelligent health care: applications of deep learning in computational medicine . Front Genet . 2021 ; 12 : 607471 . 10.3389/fgene.2021.607471 33912213
Bajwa J , Munir U , Nori A , Williams B . Artificial intelligence in healthcare: transforming the practice of medicine . Future Healthc J . 2021 ; 8 ( 2 ): e188 – e194 . 10.7861/fhj.2021-0095 34286183
Langerhuizen DWG , Bulstra AEJ , Janssen SJ , et al. Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? Clin Orthop Relat Res . 2020 ; 478 ( 11 ): 2653 – 2659 . 10.1097/CORR.0000000000001318 32452927
Prijs J , Liao Z , To M-S , et al. Development and external validation of automated detection, classification, and localization of ankle fractures: inside the black box of a convolutional neural network (CNN) . Eur J Trauma Emerg Surg . 2023 ; 49 ( 2 ): 1057 – 1069 . 10.1007/s00068-022-02136-1 36374292
Groot OQ , Bongers MER , Ogink PT , et al. Does artificial intelligence outperform natural intelligence in interpreting musculoskeletal radiological studies? A systematic review . Clin Orthop Relat Res . 2020 ; 478 ( 12 ): 2751 – 2764 . 10.1097/CORR.0000000000001360 32740477
Prijs J , Liao Z , Ashkani-Esfahani S , et al. Artificial intelligence and computer vision in orthopaedic trauma: the why, what, and how . Bone Joint J . 2022 ; 104-B ( 8 ): 911 – 914 . 10.1302/0301-620X.104B8.BJJ-2022-0119.R1 35909378
Chung SW , Han SS , Lee JW , et al. Automated detection and classification of the proximal humerus fracture by using deep learning algorithm . Acta Orthop . 2018 ; 89 ( 4 ): 468 – 473 . 10.1080/17453674.2018.1453714 29577791
World Medical Association . World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects . JAMA . 2013 ; 310 ( 20 ): 2191 – 2194 . 10.1001/jama.2013.281053 24141714
Liu X , Cruz Rivera S , Moher D , Calvert MJ , Denniston AK , SPIRIT-AI and CONSORT-AI Working Group . Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension . Nat Med . 2020 ; 26 ( 9 ): 1364 – 1374 . 10.1038/s41591-020-1034-x 32908283
Olczak J , Pavlopoulos J , Prijs J , et al. Presenting artificial intelligence, deep learning, and machine learning studies to clinicians and healthcare stakeholders: an introductory reference with a guideline and a clinical AI research (CAIR) checklist proposal . Acta Orthop . 2021 ; 92 ( 5 ): 513 – 525 . 10.1080/17453674.2021.1918389 33988081
Samilson RL , Prieto V . Dislocation arthropathy of the shoulder . J Bone Joint Surg Am . 1983 ; 65-A ( 4 ): 456 – 460 . 6833319 10.3390/jcm11072019
Hamada K , Fukuda H , Mikasa M , Kobayashi Y . Roentgenographic findings in massive rotator cuff tears. a long-term observation . Clin Orthop Relat Res . 1990 ; 254 : 92 – 96 . 2323152
Sumrein BO , Mattila VM , Lepola V , Laitinen MK , Launonen AP , NITEP Group . Intraobserver and interobserver reliability of recategorized neer classification in differentiating 2-part surgical neck fractures from multi-fragmented proximal humeral fractures in 116 patients . J Shoulder Elbow Surg . 2018 ; 27 ( 10 ): 1756 – 1761 . 10.1016/j.jse.2018.03.024 29866397
Matsumura N , Furuhata R , Seto T , et al. Reproducibility of the modified neer classification defining displacement with respect to the humeral head fragment for proximal humeral fractures . J Orthop Surg Res . 2020 ; 15 ( 1 ): 438 . 10.1186/s13018-020-01966-2 32967709
Mora Guix JM , Pedrós JS , Serrano AC . Updated classification system for proximal humeral fractures . Clin Med Res . 2009 ; 7 ( 1–2 ): 32 – 44 . 10.3121/cmr.2009.779 19574487
Robinson CM , Wylie JR , Ray AG , et al. Proximal humeral fractures with a severe varus deformity treated by fixation with a locking plate . J Bone Joint Surg Br . 2010 ; 92-B ( 5 ): 672 – 678 . 10.1302/0301-620X.92B5.22849 20436005
Hasan AP , Phadnis J , Jaarsma RL , Bain GI . Fracture line morphology of complex proximal humeral fractures . J Shoulder Elbow Surg . 2017 ; 26 ( 10 ): e300 – e308 . 10.1016/j.jse.2017.05.014 28689822
Roth KC , Denk K , Colaris JW , Jaarsma RL . Think twice before re-manipulating distal metaphyseal forearm fractures in children . Arch Orthop Trauma Surg . 2014 ; 134 ( 12 ): 1699 – 1707 . 10.1007/s00402-014-2091-8 25288028
Landis JR , Koch GG . The measurement of observer agreement for categorical data . Biometrics . 1977 ; 33 ( 1 ): 159 – 174 . 10.2307/2529310 843571
Wu Y , Kirillov A , Massa F , Lo W-Y , Girshick R . Detectron2 . https://github.com/facebookresearch/detectron2 ( date last accessed 30 August 2024 ).
He K , Zhang X , Ren S , Sun J . Deep residual learning for image recognition . Poster presented at the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) ; Las Vegas, NV, USA . 10.1109/CVPR.2016.90
Deng J , Dong W , Socher R , Li L-J , Kai Li , Fei-Fei Li . ImageNet: A large-scale hierarchical image database . Poster presented at the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops) ; Miami, FL . 10.1109/CVPR.2009.5206848
No authors listed . ResNet-152 . https://pytorch.org/vision/main/models/generated/torchvision.models.resnet152.html ( date last accessed 30 August 2024 ).
No authors listed . Google Colab . https://colab.research.google.com/?utm_source=scs-index ( date last accessed 30 August 2024 ). 10.1021/acsomega.2c00362 35252732
Meijer DT , de Muinck Keizer R-J , Doornberg JN , et al. Diagnostic accuracy of 2-dimensional computed tomography for articular involvement and fracture pattern of posterior malleolar fractures . Foot Ankle Int . 2016 ; 37 ( 1 ): 75 – 82 . 10.1177/1071100715603999 26420736
Guitton TG , Ring D , Science of Variation Group . Interobserver reliability of radial head fracture classification: two-dimensional compared with three-dimensional CT . J Bone Joint Surg Am . 2011 ; 93-A ( 21 ): 2015 – 2021 . 10.2106/JBJS.J.00711 22048097
Doornberg JN , Rademakers MV , van den Bekerom MP , et al. Two-dimensional and three-dimensional computed tomography for the classification and characterisation of tibial plateau fractures . Injury . 2011 ; 42 ( 12 ): 1416 – 1425 . 10.1016/j.injury.2011.03.025 21570072
Rangan A , Handoll H , Brealey S , et al. Surgical vs nonsurgical treatment of adults with displaced fractures of the proximal humerus: the profher randomized clinical trial . JAMA . 2015 ; 313 ( 10 ): 1037 – 1047 . 10.1001/jama.2015.1629 25756440
Lopiz Y , Alcobía-Díaz B , Galán-Olleros M , García-Fernández C , Picado AL , Marco F . Reverse shoulder arthroplasty versus nonoperative treatment for 3- or 4-part proximal humeral fractures in elderly patients: a prospective randomized controlled trial . J Shoulder Elbow Surg . 2019 ; 28 ( 12 ): 2259 – 2271 . 10.1016/j.jse.2019.06.024 31500986
Critchley O , MacLean S , Hasan A , Woodman R , Bain G . Risk factors for intra-articular involvement in proximal humeral fractures . Arch Orthop Trauma Surg . 2023 ; 143 ( 3 ): 1341 – 1351 . 10.1007/s00402-021-04293-1 35028706
Mutch J , Laflamme GY , Hagemeister N , Cikes A , Rouleau DM . A new morphological classification for greater tuberosity fractures of the proximal humerus: validation and clinical implications . Bone Joint J . 2014 ; 96-B ( 5 ): 646 – 651 . 10.1302/0301-620X.96B5.32362 24788500
Valova I , Harris C , Mai T , Gueorguieva N . Optimization of convolutional neural networks for imbalanced set classification . Procedia Comput Sci . 2020 ; 176 : 660 – 669 . 10.1016/j.procs.2020.09.038 32987045
Krogue JD , Cheng KV , Hwang KM , et al. Automatic hip fracture identification and functional subclassification with deep learning . Radiol Artif Intell . 2020 ; 2 ( 2 ): e190023 . 10.1148/ryai.2020190023 33937815
Gan K , Xu D , Lin Y , et al. Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments . Acta Orthop . 2019 ; 90 ( 4 ): 394 – 400 . 10.1080/17453674.2019.1600125 30942136
Yoon AP , Lee Y-L , Kane RL , Kuo C-F , Lin C , Chung KC . Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs . JAMA Netw Open . 2021 ; 4 ( 5 ): e216096 . 10.1001/jamanetworkopen.2021.6096 33956133
Meena T , Roy S . Bone fracture detection using deep supervised learning from radiological images: a paradigm shift . Diagnostics (Basel) . 2022 ; 12 ( 10 ): 2420 . 10.3390/diagnostics12102420 36292109
Huang S-T , Liu L-R , Chiu H-W , Huang M-Y , Tsai M-F . Deep convolutional neural network for rib fracture recognition on chest radiographs . Front Med (Lausanne) . 2023 ; 10 : 1178798 . 10.3389/fmed.2023.1178798 37593404
Anderson PG , Baum GL , Keathley N , et al. Deep learning assistance closes the accuracy gap in fracture detection across clinician types . Clin Orthop Relat Res . 2023 ; 481 ( 3 ): 580 – 588 . 10.1097/CORR.0000000000002385 36083847
Magnéli M , Ling P , Gislén J , et al. Deep learning classification of shoulder fractures on plain radiographs of the humerus, scapula and clavicle . PLoS One . 2023 ; 18 ( 8 ): e0289808 . 10.1371/journal.pone.0289808 37647274
Zhang J , Liu F , Xu J , et al. Automated detection and classification of acute vertebral body fractures using a convolutional neural network on computed tomography . Front Endocrinol (Lausanne) . 2023 ; 14 : 1132725 . 10.3389/fendo.2023.1132725 37051194
Dankelman LHM , Schilstra S , IJpma FFA , et al. Artificial intelligence fracture recognition on computed tomography: review of literature and recommendations . Eur J Trauma Emerg Surg . 2023 ; 49 ( 2 ): 681 – 691 . 10.1007/s00068-022-02128-1 36284017
Kalmet PHS , Sanduleanu S , Primakov S , et al. Deep learning in fracture detection: a narrative review . Acta Orthop . 2020 ; 91 ( 2 ): 215 – 220 . 10.1080/17453674.2019.1711323 31928116
Kunze KN , Orr M , Krebs V , Bhandari M , Piuzzi NS . Potential benefits, unintended consequences, and future roles of artificial intelligence in orthopaedic surgery research: a call to emphasize data quality and indications . Bone Jt Open . 2022 ; 3 ( 1 ): 93 – 97 . 10.1302/2633-1462.31.BJO-2021-0123.R1 35084227