Self-assembled aldehyde dehydrogenase-activatable nano-prodrug for cancer stem cell-enriched tumor detection and treatment.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 24 04 2024
accepted: 23 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Cancer stem cells, characterized by high tumorigenicity and drug-resistance, are often responsible for tumor progression and metastasis. Aldehyde dehydrogenases, often overexpressed in cancer stem cells enriched tumors, present a potential target for specific anti-cancer stem cells treatment. In this study, we report a self-assembled nano-prodrug composed of aldehyde dehydrogenases activatable photosensitizer and disulfide-linked all-trans retinoic acid for diagnosis and targeted treatment of cancer stem cells enriched tumors. The disulfide-linked all-trans retinoic acid can load with photosensitizer and self-assemble into a stable nano-prodrug, which can be disassembled into all-trans retinoic acid and photosensitizer in cancer stem cells by high level of glutathione. As for the released photosensitizer, overexpressed aldehyde dehydrogenase catalyzes the oxidation of aldehydes to carboxyl under cancer stem cells enriched microenvironment, activating the generation of reactive oxygen species and fluorescence emission. This generation of reactive oxygen species leads to direct killing of cancer stem cells and is accompanied by a noticeable fluorescence enhancement for real-time monitoring of the cancer stem cells enriched microenvironment. Moreover, the released all-trans retinoic acid, as a differentiation agent, reduce the cancer stem cells stemness and improve the cancer stem cells enriched microenvironment, offering a synergistic effect for enhanced anti-cancer stem cells treatment of photosensitizer in inhibition of in vivo tumor growth and metastasis.

Identifiants

pubmed: 39482286
doi: 10.1038/s41467-024-53771-8
pii: 10.1038/s41467-024-53771-8
doi:

Substances chimiques

Aldehyde Dehydrogenase EC 1.2.1.3
Tretinoin 5688UTC01R
Photosensitizing Agents 0
Reactive Oxygen Species 0
Prodrugs 0
Antineoplastic Agents 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9417

Subventions

Organisme : National University of Singapore (NUS)
ID : A-0009163-01-00
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 32000992
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 82073779

Informations de copyright

© 2024. The Author(s).

Références

Dagogo-Jack, I. & Shaw, A. T. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15, 81–94 (2018).
pubmed: 29115304 doi: 10.1038/nrclinonc.2017.166
Fisher, R., Pusztai, L. & Swanton, C. Cancer heterogeneity: Implications for targeted therapeutics. Br. J. Cancer 108, 479–485 (2013).
pubmed: 23299535 pmcid: 3593543 doi: 10.1038/bjc.2012.581
Meacham, C. E. & Morrison, S. J. Tumour heterogeneity and cancer cell plasticity. Nature 501, 328–337 (2013).
pubmed: 24048065 pmcid: 4521623 doi: 10.1038/nature12624
Phi, L. T. L. et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in cancer treatment. Stem. Cells Int. 2018, 5416923 (2018).
Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134 (2017).
pubmed: 28985214 doi: 10.1038/nm.4409
Bocci, F. et al. Toward understanding cancer stem cell heterogeneity in the tumor microenvironment. Proc. Natl Acad. Sci. USA 116, 148–157 (2018).
pubmed: 30587589 pmcid: 6320545 doi: 10.1073/pnas.1815345116
Visvader, J. E. & Lindeman, G. J. Cancer stem cells: Current status and evolving complexities. Cell Stem Cell 10, 717–728 (2012).
pubmed: 22704512 doi: 10.1016/j.stem.2012.05.007
Chen, K., Huang, Y. H. & Chen, J. L. Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacol. Sin. 34, 732–740 (2013).
pubmed: 23685952 pmcid: 3674516 doi: 10.1038/aps.2013.27
Najafi, M., Farhood, B. & Mortezaee, K. Cancer stem cells (CSCs) in cancer progression and therapy. J. Cell. Physiol. 234, 8381–8395 (2019).
pubmed: 30417375 doi: 10.1002/jcp.27740
Doustmihan, A. et al. Molecular targets, therapeutic agents and multitasking nanoparticles to deal with cancer stem cells: A Narrative Review. J. Control. Release 363, 57–83 (2023).
pubmed: 37739017 doi: 10.1016/j.jconrel.2023.09.029
Shibu, T. & Weinberg, R. A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 14, 611–629 (2017).
doi: 10.1038/nrclinonc.2017.44
Shen, S. Y. et al. Nanotherapeutic strategy to overcome chemotherapeutic resistance of cancer stem-like cells. Nat. Nanotechnol. 16, 104–113 (2021).
pubmed: 33437035 doi: 10.1038/s41565-020-00793-0
Baumann, M., Krause, M. & Hill, R. Exploring the role of cancer stem cells in radioresistance. Nat. Rev. Cancer 8, 545–554 (2008).
pubmed: 18511937 doi: 10.1038/nrc2419
Peitzsch, C., Tyutyunnykova, A., Pantel, K. & Dubrovska, A. Cancer stem cells: The root of tumor recurrence and metastases. Semin. Cancer Biol. 44, 10–24 (2017).
pubmed: 28257956 doi: 10.1016/j.semcancer.2017.02.011
Shiozawa, Y., Nie, B., Pienta, K. J., Morgan, T. M. & Taichman, R. S. Cancer stem cells and their role in metastasis. Pharmacol. Ther. 138, 285–293 (2013).
pubmed: 23384596 pmcid: 3602306 doi: 10.1016/j.pharmthera.2013.01.014
Sampieri, K. & Fodde, R. Cancer stem cells and metastasis. Semin. Cancer Biol. 22, 187–193 (2012).
pubmed: 22774232 doi: 10.1016/j.semcancer.2012.03.002
Oe, M. et al. Deep-Red/Near-Infrared turn-on fluorescence probes for aldehyde dehydrogenase 1A1 in cancer stem cells. ACS Sens. 6, 3320–3329 (2021).
pubmed: 34445866 doi: 10.1021/acssensors.1c01136
Minn, I. et al. Red-shifted fluorescent substrate for aldehyde dehydrogenase. Nat. Commun. 5, 3662 (2014).
pubmed: 24759454 doi: 10.1038/ncomms4662
Anorma, C. et al. Surveillance of cancer stem cell plasticity using an isoform-selective fluorescent probe for aldehyde dehydrogenase 1A1. Acs. Cent. Sci. 4, 1045–1055 (2018).
pubmed: 30159402 pmcid: 6107868 doi: 10.1021/acscentsci.8b00313
Tomita, H., Tanaka, K., Tanaka, T. & Hara, A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget 7, 11018–11032 (2016).
pubmed: 26783961 doi: 10.18632/oncotarget.6920
Clark, D. W. & Palle, K. Aldehyde dehydrogenases in cancer stem cells: Potential as therapeutic targets. Ann. Transl. Med. 4, 518 (2016).
pubmed: 28149880 doi: 10.21037/atm.2016.11.82
Jones, R. et al. Assessment of aldehyde dehydrogenase in viable cells. Blood 85, 2742–2746 (1995).
pubmed: 7742535 doi: 10.1182/blood.V85.10.2742.bloodjournal85102742
Han, J. et al. Cancer stem cell-targeted bio-imaging and chemotherapeutic perspective. Chem. Soc. Rev. 49, 7856–7878 (2020).
pubmed: 32633291 doi: 10.1039/D0CS00379D
Yagishita, A., Ueno, T., Tsuchihara, K. & Urano, Y. Amino BODIPY-based blue fluorescent probes for aldehyde dehydrogenase 1-expressing cells. Bioconjugate Chem. 32, 234–238 (2021).
doi: 10.1021/acs.bioconjchem.0c00565
Maity, S. et al. Thiophene bridged aldehydes (TBAs) image ALDH activity in cells via modulation of intramolecular charge transfer. Chem. Sci. 8, 7143–7151 (2017).
pubmed: 29081945 pmcid: 5635522 doi: 10.1039/C7SC03017G
Bearrood, T. E., Aguirre-Figueroa, G. & Chan, J. Rational design of a red fluorescent sensor for ALDH1A1 displaying enhanced cellular uptake and reactivity. Bioconjugate Chem. 31, 224–228 (2020).
doi: 10.1021/acs.bioconjchem.9b00723
Zhao, X., Liu, J., Fan, J., Chao, H. & Peng, X. Recent progress in photosensitizers for overcoming the challenges of photodynamic therapy: From molecular design to application. Chem. Soc. Rev. 50, 4185–4219 (2021).
pubmed: 33527104 doi: 10.1039/D0CS00173B
Liu, S., Feng, G., Tang, B. & Liu, B. Recent advances of AIE light-up probes for photodynamic therapy. Chem. Sci. 12, 6488–6506 (2021).
pubmed: 34040725 pmcid: 8132949 doi: 10.1039/D1SC00045D
Chen, Y. et al. Self-reporting photodynamic nanobody conjugate for precise and sustainable large-volume tumor treatment. Nat. Commun. 15, 6395 (2024).
pubmed: 39080269 pmcid: 11289368
Tang, Y. et al. Hypoxia-responsive photosensitizer targeting dual organelles for photodynamic therapy of tumors. Small 19, 2205440 (2023).
doi: 10.1002/smll.202205440
Qi, G. et al. Enzyme-mediated intracellular polymerization of AIEgens for light-up tumor localization and theranostics. Adv. Mater. 34, 2106885 (2022).
doi: 10.1002/adma.202106885
Tian, J. et al. Activatable Type I photosensitizer with quenched photosensitization Pre and Post Photodynamic Therapy. Angew. Chem. Int. Ed. 62, e202307288 (2023).
doi: 10.1002/anie.202307288
Li, X., Kolemen, S., Yoon, J. & Akkaya, E. U. Activatable photosensitizers: Agents for selective photodynamic therapy. Adv. Funct. Mater. 27, 1604053 (2016).
doi: 10.1002/adfm.201604053
Tang Y. Q., Wang X. & Li. Q. Pyroptosis of breast cancer stem cells and immune activation enabled by a multifunctional prodrug photosensitizer. Adv. Funct. Mater. 34, 2405367 (2024).
An, J. et al. An unexpected strategy to alleviate hypoxia limitation of photodynamic therapy by biotinylation of photosensitizers. Nat. Commun. 13, 2225 (2022).
pubmed: 35469028 pmcid: 9038921 doi: 10.1038/s41467-022-29862-9
Xu, Q. et al. A self-illuminating nanoparticle for inflammation imaging and cancer therapy. Sci. Adv. 5, eaat2953 (2019).
pubmed: 30662940 pmcid: 6326751 doi: 10.1126/sciadv.aat2953
Mao, D. et al. AIEgen-coupled upconversion nanoparticles eradicate solid tumors through dual-mode ROS activation. Sci. Adv. 26, eabb2712 (2020).
doi: 10.1126/sciadv.abb2712
Ning, S. et al. A type I AIE photosensitiser-loaded biomimetic nanosystem allowing precise depletion of cancer stem cells and prevention of cancer recurrence after radiotherapy. Biomaterials 295, 122034 (2023).
pubmed: 36746049 doi: 10.1016/j.biomaterials.2023.122034
Zhang, T. et al. Photothermal-triggered sulfur oxide gas therapy augments Type I photodynamic therapy for potentiating cancer stem cell ablation and inhibiting radioresistant tumor recurrence. Adv. Sci. 10, 2304042 (2023).
doi: 10.1002/advs.202304042
Prieto-Vila, M., Takahashi, R., Usuba, W., Kohama, I. & Ochiya, T. Drug resistance driven by cancer stem cells and their niche. Int. J. Mol. Sci. 18, 2574 (2017).
Zhou, H., Zhang, J., Zhang, X. & Li, Q. Targeting cancer stem cells for reversing therapy resistance: Mechanism, signaling, and prospective agents. Signal Transduct. Target. Ther. 6, 62 (2021).
pubmed: 33589595 pmcid: 7884707 doi: 10.1038/s41392-020-00430-1
Zhang, Z., Wang, K., Mo, J., Li, X. & Yu, W. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J. Stem Cells 12, 562–584 (2020).
pubmed: 32843914 pmcid: 7415247 doi: 10.4252/wjsc.v12.i7.562
Arima, Y., Nobusue, H. & Saya, H. Targeting of cancer stem cells by differentiation therapy. Cancer Sci. 111, 2689–2695 (2020).
pubmed: 32462706 pmcid: 7419023 doi: 10.1111/cas.14504
Azzi, S. et al. Differentiation therapy: Targeting human renal cancer stem cells with interleukin 15. J. Natl Cancer Inst. 103, 1884–1898 (2011).
pubmed: 22043039 doi: 10.1093/jnci/djr451
Thé, H. D. Differentiation therapy revisited. Nat. Rev. Cancer 18, 117–127 (2018).
pubmed: 29192213 doi: 10.1038/nrc.2017.103
Hu, J. et al. Long-term efficacy and safety of all-trans retinoic acid/arsenic trioxide-based therapy in newly diagnosed acute promyelocytic leukemia. Proc. Natl Acad. Sci. USA 106, 3342–3347 (2009).
pubmed: 19225113 pmcid: 2651325 doi: 10.1073/pnas.0813280106
Yao, W. et al. All-trans Retinoic Acid Reduces Cancer Stem Cell-Like Cell-mediated Resistance to Gefitinib in NSCLC Adenocarcinoma Cells. Bmc. Cancer 30, 315 (2020).
doi: 10.1186/s12885-020-06818-0
Yang, Y. et al. Trisulfide bond–mediated doxorubicin dimeric prodrug nanoassemblies with high drug loading, high self-assembly stability, and high tumor selectivity. Sci. Adv. 6, eabc1725 (2020).
pubmed: 33148644 pmcid: 7673695 doi: 10.1126/sciadv.abc1725
Sun, B. et al. Probing the impact of sulfur/selenium/carbon linkages on prodrug nanoassemblies for cancer therapy. Nat. Commun. 10, 3211 (2019).
pubmed: 31324811 pmcid: 6642185 doi: 10.1038/s41467-019-11193-x
Sun, B. et al. Disulfide bond-driven oxidation- and reduction-responsive prodrug nanoassemblies for cancer therapy. Nano. Lett. 18, 3643–3650 (2018).
pubmed: 29726685 doi: 10.1021/acs.nanolett.8b00737
Yan, M., Zuo, X. & Wei, D. Concise review: Emerging role of CD44 in cancer stem cells: A promising biomarker and therapeutic target. Stem. Cells Transl. Med. 4, 1033–1043 (2015).
pubmed: 26136504 pmcid: 4542874 doi: 10.5966/sctm.2015-0048
Liu, Z. et al. A dual-targeted theranostic photosensitizer based on a TADF fluorescein derivative. J. Control. Release 310, 1–10 (2019).
pubmed: 31381942 doi: 10.1016/j.jconrel.2019.08.001
Tang, Y. et al. Pyroptosis-Mediated Synergistic Photodynamic and photothermal immunotherapy enabled by a tumor-membrane-targeted photosensitive dimer. Adv. Mater. 35, 2300232 (2023).
doi: 10.1002/adma.202300232
Tang, Y., Wang, X., Chen, S. & Li, Q. Photoactivated theranostic nanomaterials based on aggregation-induced emission luminogens for cancer photoimmunotherapy. Responsive Mater. 2, e20240003 (2024).
doi: 10.1002/rpm.20240003
Chen, Q., He, P., Wang, Z. & Tang, B. A feasible strategy of fabricating Type I photosensitizer for photodynamic therapy in cancer cells and pathogens. ACS Nano 15, 7735–7743 (2021).
pubmed: 33856778 doi: 10.1021/acsnano.1c01577
Bahmad, H. F. et al. Sphere-formation assay: Three-dimensional in vitro culturing of prostate cancer stem/progenitor sphere-forming cells. Front. Oncol. 8, 347 (2018).
pubmed: 30211124 pmcid: 6121836 doi: 10.3389/fonc.2018.00347
Lee, C. H., Yu, C. C., Wang, B. Y. & Chang, W. W. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget 7, 1215–1226 (2016).
pubmed: 26527320 doi: 10.18632/oncotarget.6261
Herreros-Pomares, A. et al. Lung tumorspheres reveal cancer stem cell-like properties and a score with prognostic impact in resected non-small-cell lung cancer. Cell Death Dis. 10, 660 (2019).
pubmed: 31506430 pmcid: 6737160 doi: 10.1038/s41419-019-1898-1
Heddleston, J. M. et al. Hypoxia inducible factors in cancer stem cells. Br. J. Cancer 102, 789–795 (2010).
pubmed: 20104230 pmcid: 2833246 doi: 10.1038/sj.bjc.6605551
Najafi, M. et al. Hypoxia in solid tumors: a key promoter of cancer stem cell (CSC) resistance. J. Cancer Res. Clin. Oncol. 146, 19–31 (2020).
pubmed: 31734836 doi: 10.1007/s00432-019-03080-1
Lee, H. E. et al. An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer. Br. J. Cancer 104, 1730–1738 (2011).
pubmed: 21559013 pmcid: 3111169 doi: 10.1038/bjc.2011.159
Liu, M. et al. Transcriptional profiles of different states of cancer stem cells in triple-negative breast cancer. Mol. Cancer 17, 65 (2018).
pubmed: 29471829 pmcid: 5824475 doi: 10.1186/s12943-018-0809-x
He, L., Wick, N., Germans, S. K. & Peng, Y. The role of breast cancer stem cells in chemoresistance and metastasis in triple-negative breast cancer. Cancers 13, 6209 (2021).
pubmed: 34944829 doi: 10.3390/cancers13246209

Auteurs

Bowen Li (B)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Jianwu Tian (J)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Fu Zhang (F)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Chongzhi Wu (C)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Zhiyao Li (Z)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.

Dandan Wang (D)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Jiahao Zhuang (J)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Siqin Chen (S)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Wentao Song (W)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Yufu Tang (Y)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.

Yuan Ping (Y)

College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. pingy@zju.edu.cn.

Bin Liu (B)

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore. cheliub@nus.edu.sg.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH