Molecular probes for tracking lipid droplet membrane dynamics.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
15
02
2024
accepted:
16
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Lipid droplets (LDs) feature a unique monolayer lipid membrane that has not been extensively studied due to the lack of suitable molecular probes that are able to distinguish this membrane from the LD lipid core. In this work, we present a three-pronged molecular probe design strategy that combines lipophilicity-based organelle targeting with microenvironment-dependent activation and design an LD membrane labeling pro-probe called LDM. Upon activation by the HClO/ClO
Identifiants
pubmed: 39482302
doi: 10.1038/s41467-024-53667-7
pii: 10.1038/s41467-024-53667-7
doi:
Substances chimiques
Molecular Probes
0
Membrane Proteins
0
Fluorescent Dyes
0
Membrane Lipids
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9413Subventions
Organisme : National University of Singapore (NUS)
ID : NUHSRO/2020/133/Startup/08
Organisme : National University of Singapore (NUS)
ID : NUHSRO/2020/133/Startup/08
Organisme : National University of Singapore (NUS)
ID : NUHSRO/2020/133/Startup/08
Informations de copyright
© 2024. The Author(s).
Références
Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021).
pubmed: 34799702
doi: 10.1038/s42255-021-00493-6
Roberts, M. A. & Olzmann, J. A. Protein Quality Control and Lipid Droplet Metabolism. Annu Rev. Cell Dev. Biol. 36, 115–139 (2020).
pubmed: 33021827
pmcid: 7593838
doi: 10.1146/annurev-cellbio-031320-101827
Mece, O. et al. Lipid droplet degradation by autophagy connects mitochondria metabolism to Prox1-driven expression of lymphatic genes and lymphangiogenesis. Nat. Commun. 13, 2760 (2022).
pubmed: 35589749
pmcid: 9120506
doi: 10.1038/s41467-022-30490-6
Talari, N. K. et al. Lipid-droplet associated mitochondria promote fatty-acid oxidation through a distinct bioenergetic pattern in male Wistar rats. Nat. Commun. 14, 766 (2023).
pubmed: 36765117
pmcid: 9918515
doi: 10.1038/s41467-023-36432-0
Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019).
pubmed: 30523332
pmcid: 6746329
doi: 10.1038/s41580-018-0085-z
Mau, K. H. T. et al. Dynamic enlargement and mobilization of lipid droplets in pluripotent cells coordinate morphogenesis during mouse peri-implantation development. Nat. Commun. 13, 3861 (2022).
pubmed: 35790717
pmcid: 9256688
doi: 10.1038/s41467-022-31323-2
Tian, H. et al. Fluorescent probes for the imaging of lipid droplets in live cells. Coordination Chemistry Reviews 427, https://doi.org/10.1016/j.ccr.2020.213577 (2021).
Chen, J. et al. Stable Super-Resolution Imaging of Lipid Droplet Dynamics through a Buffer Strategy with a Hydrogen-Bond Sensitive Fluorogenic Probe. Angew. Chem. Int Ed. Engl. 60, 25104–25113 (2021).
pubmed: 34519394
doi: 10.1002/anie.202111052
Liu, G. et al. Ultrabright organic fluorescent probe for quantifying the dynamics of cytosolic/nuclear lipid droplets. Biosensors and Bioelectronics 241, https://doi.org/10.1016/j.bios.2023.115707 (2023).
Song, C. W. et al. A rationally designed polarity–viscosity sensitive probe for imaging lipid droplets. Dyes and Pigments 171, https://doi.org/10.1016/j.dyepig.2019.107718 (2019).
Ye, Z. et al. In-Sequence High-Specificity Dual-Reporter Unlocking of Fluorescent Probe Enables the Precise Identification of Atherosclerotic Plaques. Angew. Chem. Int Ed. Engl. 61, e202204518 (2022).
pubmed: 35460326
doi: 10.1002/anie.202204518
Fan, L. et al. Lipid Droplet-Specific Fluorescent Probe for In Vivo Visualization of Polarity in Fatty Liver, Inflammation, and Cancer Models. Anal. Chem. 93, 8019–8026 (2021).
pubmed: 34037378
doi: 10.1021/acs.analchem.1c01125
Halaoui, R. & McCaffrey, L. Rewiring cell polarity signaling in cancer. Oncogene 34, 939–950 (2015).
pubmed: 24632617
doi: 10.1038/onc.2014.59
Zhanghao, K. et al. High-dimensional super-resolution imaging reveals heterogeneity and dynamics of subcellular lipid membranes. Nat. Commun. 11, 5890 (2020).
pubmed: 33208737
pmcid: 7674432
doi: 10.1038/s41467-020-19747-0
Peng, G. et al. Highly Efficient Red/NIR-Emissive Fluorescent Probe with Polarity-Sensitive Character for Visualizing Cellular Lipid Droplets and Determining Their Polarity. Anal. Chem. 94, 12095–12102 (2022).
pubmed: 36006461
doi: 10.1021/acs.analchem.2c02077
Zhang, J. et al. Mitochondrial-Targeted Delivery of Polyphenol-Mediated Antioxidases Complexes against Pyroptosis and Inflammatory Diseases. Adv. Mater. 35, e2208571 (2023).
pubmed: 36648306
doi: 10.1002/adma.202208571
Li, Y. et al. Engineering polyphenols with biological functions via polyphenol-protein interactions as additives for functional foods. Trends Food Sci. Technol. 110, 470–482 (2021).
doi: 10.1016/j.tifs.2021.02.009
Shi, D., Liu, W., Wang, G., Guo, Y. & Li, J. Small-molecule fluorescence-based probes for aging diagnosis %J. Acta Mater. Med. 1, 4–23 (2022).
Zhang, X. et al. Ratiometric fluorescent probes for capturing endogenous hypochlorous acid in the lungs of mice. Chem. Sci. 9, 8207–8212 (2018).
pubmed: 30542568
pmcid: 6240892
doi: 10.1039/C8SC03226B
Yao, L., Song, H., Yin, C. & Huo, F. An ICT-switched fluorescent probe for visualizing lipid and HClO in lipid droplets during ferroptosis. Chem. Commun. 60, 835–838 (2024).
doi: 10.1039/D3CC05679A
Yang, X. et al. Visualization of biothiols and HClO in cancer therapy via a multi-responsive fluorescent probe. Sensors and Actuators B: Chemical 347, https://doi.org/10.1016/j.snb.2021.130620 (2021).
Lu, J. et al. Assessing Early Atherosclerosis by Detecting and Imaging of Hypochlorous Acid and Phosphorylation Using Fluorescence Nanoprobe. Advanced Materials 35, https://doi.org/10.1002/adma.202307008 (2023).
Zadoorian, A., Du, X. & Yang, H. Lipid droplet biogenesis and functions in health and disease. Nat. Rev. Endocrinol. 19, 443–459 (2023).
pubmed: 37221402
doi: 10.1038/s41574-023-00845-0
Kitamura, T., Takagi, S., Naganuma, T. & Kihara, A. Mouse aldehyde dehydrogenase ALDH3B2 is localized to lipid droplets via two C-terminal tryptophan residues and lipid modification. Biochem J. 465, 79–87 (2015).
pubmed: 25286108
doi: 10.1042/BJ20140624
Schwefel, D. et al. Structural insights into the mechanism of GTPase activation in the GIMAP family. Structure 21, 550–559 (2013).
pubmed: 23454188
doi: 10.1016/j.str.2013.01.014
Cobbe, N. et al. The conserved metalloprotease invadolysin localizes to the surface of lipid droplets. J. Cell Sci. 122, 3414–3423 (2009).
pubmed: 19706689
pmcid: 2736869
doi: 10.1242/jcs.044610
Yuan, M., Lin, X., Wang, D. & Dai, J. Proteins: Neglected active ingredients in edible bird’s nest. Chin. Herb. Med. 15, 383–390 (2023).
pubmed: 37538855
pmcid: 10394320
Zhou, R. et al. Stimulated Emission Depletion (STED) Super-Resolution Imaging with an Advanced Organic Fluorescent Probe: Visualizing the Cellular Lipid Droplets at the Unprecedented Nanoscale Resolution. ACS Mater. Lett. 3, 516–524 (2021).
doi: 10.1021/acsmaterialslett.1c00143
Zhou, R. et al. A new organic molecular probe as a powerful tool for fluorescence imaging and biological study of lipid droplets. Theranostics 13, 95–105 (2023).
pubmed: 36593956
pmcid: 9800742
doi: 10.7150/thno.79052
Cao, M. et al. Structure Rigidification Promoted Ultrabright Solvatochromic Fluorescent Probes for Super-Resolution Imaging of Cytosolic and Nuclear Lipid Droplets. Anal. Chem. 94, 10676–10684 (2022).
pubmed: 35853217
doi: 10.1021/acs.analchem.2c00964
Dai, J. et al. Super-resolution dynamic tracking of cellular lipid droplets employing with a photostable deep red fluorogenic probe. Biosensors and Bioelectronics 229, https://doi.org/10.1016/j.bios.2023.115243 (2023).
Chen, Q. et al. A dual-labeling probe to track functional mitochondria-lysosome interactions in live cells. Nat. Commun. 11, 6290 (2020).
pubmed: 33293545
pmcid: 7722883
doi: 10.1038/s41467-020-20067-6
Wu, Y. & Shroff, H. Faster, sharper, and deeper: structured illumination microscopy for biological imaging. Nat. Methods 15, 1011–1019 (2018).
pubmed: 30478322
doi: 10.1038/s41592-018-0211-z
Bickel, P. E., Tansey, J. T. & Welte, M. A. PAT proteins, an ancient family of lipid droplet proteins that regulate cellular lipid stores. Biochimica et. Biophysica Acta (BBA) - Mol. Cell Biol. Lipids 1791, 419–440 (2009).
doi: 10.1016/j.bbalip.2009.04.002
Wu, Y. et al. Plin2-mediated lipid droplet mobilization accelerates exit from pluripotency by lipidomic remodeling and histone acetylation. Cell Death Differ. 29, 2316–2331 (2022).
pubmed: 35614132
pmcid: 9613632
doi: 10.1038/s41418-022-01018-8
Kong, F. et al. Traditional Chinese medicines for non-small cell lung cancer: Therapies and mechanisms. Chin. Herb. Med. 15, 509–515 (2023).
pubmed: 38094015
pmcid: 10715886
Lyu, X. et al. A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. Dev. Cell 56, 2592–2606 e2597 (2021).
pubmed: 34508658
doi: 10.1016/j.devcel.2021.08.015
Thiam, A. R., Farese, R. V. Jr. & Walther, T. C. The biophysics and cell biology of lipid droplets. Nat. Rev. Mol. Cell Biol. 14, 775–786 (2013).
pubmed: 24220094
pmcid: 4526153
doi: 10.1038/nrm3699
Tatenaka, Y. et al. Monitoring Lipid Droplet Dynamics in Living Cells by Using Fluorescent Probes. Biochemistry 58, 499–503 (2019).
pubmed: 30628446
doi: 10.1021/acs.biochem.8b01071
Honig, B. & Shapiro, L. Adhesion Protein Structure, Molecular Affinities, and Principles of Cell-Cell Recognition. Cell 181, 520–535 (2020).
pubmed: 32359436
pmcid: 7233459
doi: 10.1016/j.cell.2020.04.010
Zhou, Z. et al. Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nat. Commun. 12, 1570 (2021).
pubmed: 33692357
pmcid: 7946963
doi: 10.1038/s41467-021-21874-1
Liu, K. & Czaja, M. J. Regulation of lipid stores and metabolism by lipophagy. Cell Death Differ. 20, 3–11 (2013).
pubmed: 22595754
doi: 10.1038/cdd.2012.63
Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol. 21, 439–458 (2020).
pubmed: 32372019
doi: 10.1038/s41580-020-0241-0
Martínez-Reyes, I. & Chandel, N. S. Cancer metabolism: looking forward. Nat. Rev. Cancer 21, 669–680 (2021).
pubmed: 34272515
doi: 10.1038/s41568-021-00378-6
Fan, T. et al. Metabolomic and transcriptomic profiling of hepatocellular carcinomas in Hras12V transgenic mice. Cancer Med. 6, 2370–2384 (2017).
pubmed: 28941178
pmcid: 5633588
doi: 10.1002/cam4.1177
Liu, R. et al. Choline kinase alpha 2 acts as a protein kinase to promote lipolysis of lipid droplets. Mol. Cell 81, 2722–2735.e2729 (2021).
pubmed: 34077757
doi: 10.1016/j.molcel.2021.05.005
Zhou, L. et al. Coordination Among Lipid Droplets, Peroxisomes, and Mitochondria Regulates Energy Expenditure Through the CIDE-ATGL-PPARα Pathway in Adipocytes. Diabetes 67, 1935–1948 (2018).
pubmed: 29986925
doi: 10.2337/db17-1452
Wang, J. et al. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D-TSG101 interactions. Nature Communications 12, https://doi.org/10.1038/s41467-021-21525-5 (2021).
Yu, Z. et al. In situ visualization of the cellular uptake and sub-cellular distribution of mussel oligosaccharides. Journal of Pharmaceutical Analysis 14, https://doi.org/10.1016/j.jpha.2023.12.022 (2024).
Tang, Z.-H. et al. Induction of reactive oxygen species-stimulated distinctive autophagy by chelerythrine in non-small cell lung cancer cells. Redox Biol. 12, 367–376 (2017).
pubmed: 28288416
pmcid: 5349618
doi: 10.1016/j.redox.2017.03.009
Gao, W.-Y. et al. Tanshinone IIA Downregulates Lipogenic Gene Expression and Attenuates Lipid Accumulation through the Modulation of LXRα/SREBP1 Pathway in HepG2 Cells. Biomedicines 9, https://doi.org/10.3390/biomedicines9030326 (2021).
Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).
pubmed: 24937069
pmcid: 4248787
doi: 10.1038/nchembio.1556
Sancho, A., Vandersmissen, I., Craps, S., Luttun, A. & Groll, J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci. Rep. 7, 46152 (2017).
pubmed: 28393890
pmcid: 5385528
doi: 10.1038/srep46152
Henne, W. M., Reese, M. L. & Goodman, J. M. The assembly of lipid droplets and their roles in challenged cells. EMBO J 37, https://doi.org/10.15252/embj.201898947 (2018).
Ramosaj, M. et al. Lipid droplet availability affects neural stem/progenitor cell metabolism and proliferation. Nat. Commun. 12, 7362 (2021).
pubmed: 34934077
pmcid: 8692608
doi: 10.1038/s41467-021-27365-7
Gerst, R., Cseresnyés, Z. & Figge, M. T. JIPipe: visual batch processing for ImageJ. Nat. Methods 20, 168–169 (2023).
pubmed: 36627450
doi: 10.1038/s41592-022-01744-4