Reflection mode polarimetry guides laser mass spectrometry to diagnostically important regions of human breast cancer tissue.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 03 06 2024
accepted: 28 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

To enhance the clinical utility of mass spectrometry (MS), lengthy dwell times on less informative regions of patient specimens (e.g., adipose tissue in breast) must be minimized. Additionally, a promising variant of MS known as picosecond infrared laser MS (PIRL-MS) faces further challenges, namely, lipid contamination when probing adipose tissue. Here we demonstrate on several thick non-sectioned resected human breast specimens (healthy and malignant) that reflection-mode polarimetric imaging can robustly guide PIRL-MS toward regions devoid of significant fat content to (1) avoid signal contamination and (2) shorten overall MS analysis times. Through polarimetric targeting of non-fat regions, PIRL-MS sampling revealed feature-rich spectral signatures including several known breast cancer markers. Polarimetric guidance mapping was enabled by circular degree-of-polarization (DOP) imaging via both Stokes and Mueller matrix polarimetry. These results suggest a potential synergistic hybrid approach employing polarimetry as a wide-field-imaging guidance tool to optimize efficient probing of tissue molecular content using MS.

Identifiants

pubmed: 39482347
doi: 10.1038/s41598-024-77963-w
pii: 10.1038/s41598-024-77963-w
doi:

Substances chimiques

Biomarkers, Tumor 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26230

Subventions

Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2018-04930
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2018-04930
Organisme : New Frontiers in Research Fund
ID : NFRFE-2019-01049
Organisme : New Frontiers in Research Fund
ID : NFRFE-2019-01049

Informations de copyright

© 2024. The Author(s).

Références

Woolman, M. et al. and A. Zarrine-Afsar, Picosecond infrared laser desorption mass spectrometry identifies medulloblastoma subgroups on intrasurgical timescales, Cancer Res 79(9), 2426–2434 (2019).
Woolman, M. et al. Lipidomic-Based Approach to 10 s classification of Major Pediatric Brain Cancer types with Picosecond Infrared Laser Mass Spectrometry. Anal. Chem. 96 (3), 1019–1028 (2024).
pubmed: 38190738 pmcid: 10809247 doi: 10.1021/acs.analchem.3c03156
Katz, L. et al. Picosecond Infrared Laser Mass Spectrometry Identifies a Metabolite Array for 10 s Diagnosis of Select Skin Cancer Types: A Proof-of-Concept Feasibility Study. Anal. Chem. 94 (48), 16821–16830 (2022).
pubmed: 36395434 doi: 10.1021/acs.analchem.2c03918
Woolman, M. et al. Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe. Chem. Sci. 8 (9), 6508–6519 (2017).
pubmed: 28989676 pmcid: 5628578 doi: 10.1039/C7SC01974B
Ifa, D. R. & Eberlin, L. S. Ambient ionization mass spectrometry for cancer diagnosis and surgical margin evaluation. Clin. Chem. 62 (1), 111–123 (2016).
pubmed: 26555455 doi: 10.1373/clinchem.2014.237172
Woolman, M. et al. Optimized Mass Spectrometry Analysis Workflow with Polarimetric Guidance for ex vivo and in situ Sampling of Biological Tissues. Sci. Rep. 7 (1), 1–12 (2017).
doi: 10.1038/s41598-017-00272-y
Hänel, L., Kwiatkowski, M., Heikaus, L. & Schlüter, H. Mass spectrometry-based intraoperative tumor diagnostics. Future Sci. OA 5(3), (2019). https://doi.org/10.4155/fsoa-2018-0087
Woolman, M., Katz, L., Tata, A., Basu, S. S. & Zarrine-Afsar, A. Breaking Through the Barrier: Regulatory Considerations Relevant to Ambient Mass Spectrometry at the Bedside. Clin. Lab. Med. 41 (2), 221–246 (2021).
pubmed: 34020761 doi: 10.1016/j.cll.2021.03.004
Woolman, M. et al. In situ tissue pathology from spatially encoded mass spectrometry classifiers visualized in real time through augmented reality. Chem. Sci. 11 (33), 8723–8735 (2020).
pubmed: 34123126 pmcid: 8163395 doi: 10.1039/D0SC02241A
Calligaris, D. et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc. Natl. Acad. Sci. U S A. 111 (42), 15184–15189 (2014).
pubmed: 25246570 pmcid: 4210338 doi: 10.1073/pnas.1408129111
Singh, M. D., Ghosh, N. & Vitkin, I. A. Mueller Matrix Polarimetry in Biomedicine: Enabling Technology, Biomedical Applications, and Future Prospects, in Polarized Light in Biomedical Imaging and Sensing, (eds Ramella-Roman, J. C. & Novikova, T.) (Springer International Publishing, 61–103. (2023).
doi: 10.1007/978-3-031-04741-1_3
He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl. 10 (1), 194 (2021).
pubmed: 34552045 pmcid: 8458371 doi: 10.1038/s41377-021-00639-x
Tata, A. et al. Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues. Chem. Sci. 7 (3), 2162–2169 (2016).
pubmed: 30155015 doi: 10.1039/C5SC03782D
Tata, A. et al. Rapid detection of necrosis in breast cancer with desorption electrospray ionization mass spectrometry. Sci. Rep. 6 (October), 1–10 (2016).
Qi, J. et al. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat. Biomed. Eng. 7, 971–985 (2023). https://doi.org/10.1038/s41551-023-01018-0
Liu, T. et al. Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry. Biomed. Opt. Express. 9 (9), 4413 (2018).
pubmed: 30615708 pmcid: 6157769 doi: 10.1364/BOE.9.004413
Sharma, M. et al. Histopathological correlations of bulk tissue polarimetric images: Case study. J. Biophotonics. 14 (5), 1–12 (2021).
doi: 10.1002/jbio.202000475
Nazari, S. S. & Mukherjee, P. An overview of mammographic density and its association with breast cancer. Breast Cancer. 25 (3), 259–267 (2018).
pubmed: 29651637 doi: 10.1007/s12282-018-0857-5
Berry, R. et al. Imaging of Adipose Tissue 1st edn 537 (Elsevier Inc., 2014).
Antonelli, M. R. et al. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt. Express. 18 (10), 10200 (2010).
pubmed: 20588874 doi: 10.1364/OE.18.010200
Novikova, T. et al. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl. Phys. Lett. 102 (24), 241103 (2013).
doi: 10.1063/1.4811414
Sun, M. et al. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters. Appl. Opt. 53 (14), 2949 (2014).
pubmed: 24922012 doi: 10.1364/AO.53.002949
Lu, S. Y. & Chipman, R. A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A. 13 (5), 1106 (1996).
doi: 10.1364/JOSAA.13.001106
Schwartz, C. & Dogariu, A. Backscattered polarization patterns determined by conservation of angular momentum. J. Opt. Soc. Am. A. 25 (2), 431 (2008).
doi: 10.1364/JOSAA.25.000431
Bohren, C. F. & Huffman, D. R. Absorption and Scattering by a Sphere, in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 7(1), 82–129. (2007).
Chen, Z., Yao, Y., Zhu, Y. & Ma, H. Removing the dichroism and retardance artifacts in a collinear backscattering Mueller matrix imaging system. Opt. Express. 26 (22), 28288 (2018).
pubmed: 30470003 doi: 10.1364/OE.26.028288
Gramatikov, B. I. A Mueller matrix approach to flat gold mirror analysis and polarization balancing for use in retinal birefringence scanning systems. Optik (Stuttg). 207 (February), 164474 (2020).
doi: 10.1016/j.ijleo.2020.164474
Baba, J. S., Chung, J. R., DeLaughter, A. H., Cameron, B. D. & Coté, G. L. Development and calibration of an automated Mueller matrix polarization imaging system. J. Biomed. Opt. 7 (3), 341 (2002).
pubmed: 12175283 doi: 10.1117/1.1486248
Pardo, I. et al. Wide-field Mueller matrix polarimetry for spectral characterization of basic biological tissues: Muscle, fat, connective tissue, and skin. J. Biophotonics 17 (1), (2023).
Sankaran, V., Walsh, J. T. & Maitland, D. J. Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt. 7 (3), 300 (2002).
pubmed: 12175278 doi: 10.1117/1.1483318
Singh, M. D. & Vitkin, I. A. Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light. Biomed. Opt. Express. 12 (11), 6831 (2021).
pubmed: 34858683 pmcid: 8606157 doi: 10.1364/BOE.438631
Nader, C. A. et al. Influence of size, proportion, and absorption coefficient of spherical scatterers on the degree of light polarization and the grain size of speckle pattern. Appl. Opt. 54 (35), 10369 (2015).
pubmed: 26836860 doi: 10.1364/AO.54.010369
Sun, P. & Wang, Y. Measurements of optical parameters of phantom solution and bulk animal tissues in vitro at 650 nm. Opt. Laser Technol. 42 (1), 1–7 (2010).
doi: 10.1016/j.optlastec.2009.06.001
Jacques, S. L., Roman, J. R. & Lee, K. Imaging superficial tissues with polarized light. Lasers Surg. Med. 26 (2), 119 (2000).
pubmed: 10685085 doi: 10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
Pezzaniti, J. L. & Chipman, R. A. Angular dependence of polarizing beam-splitter cubes. Appl. Opt. 33 (10), 1916 (1994).
doi: 10.1364/AO.33.001916
Wang, X. et al. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography. J. Biomed. Opt. 11 (4), 041106 (2006).
pubmed: 16965134 doi: 10.1117/1.2342747
Wang, X. et al. Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo. J. Biomed. Opt. 10 (5), 051704 (2005).
pubmed: 16292956 doi: 10.1117/1.2098607
Suárez–Nájera, L. E. et al. Castro– Reyes, Morphometric study of adipocytes on breast cancer by means of photonic microscopy and image analysis. Microsc Res. Tech. 81 (2), 240–249 (2018).
pubmed: 29193620 doi: 10.1002/jemt.22972
Bartek, M., Wang, X., Wells, W., Paulsen, K. D. & Pogue, B. W. Estimation of subcellular particle size histograms with electron microscopy for prediction of optical scattering in breast tissue. J. Biomed. Opt. 11 (6), 064007 (2006).
pubmed: 17212530 doi: 10.1117/1.2398903
Bodelon, C. et al. Mammary collagen architecture and its association with mammographic density and lesion severity among women undergoing image-guided breast biopsy. Breast Cancer Res. 23 (1), 1–14 (2021).
doi: 10.1186/s13058-021-01482-z
Arifler, D., Pavlova, I., Gillenwater, A. & Richards-Kortum, R. Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophys. J. 92 (9), 3260–3274 (2007).
pubmed: 17307834 pmcid: 1852360 doi: 10.1529/biophysj.106.089839
Bevilacqua, F., Marquet, P., Coquoz, O. & Depeursinge, C. Role of tissue structure in photon migration through breast tissues. Appl. Opt. 36 (1), 44 (1997).
pubmed: 18250646 doi: 10.1364/AO.36.000044
Singh, M. D. & Vitkin, I. A. Spatial helicity response metric to quantify particle size and turbidity of heterogeneous media through circular polarization imaging. Sci. Rep. 13 (1), 2231 (2023).
pubmed: 36755076 pmcid: 9908950 doi: 10.1038/s41598-023-29444-9
Macdonald, C. M., Jacques, S. L. & Meglinski, I. V. Circular polarization memory in polydisperse scattering media. Phys. Rev. E. 91 (3), 033204 (2015).
doi: 10.1103/PhysRevE.91.033204
MacKintosh, F. C., Zhu, J. X., Pine, D. J. & Weitz, D. A. Polarization memory of multiply scattered light. Phys. Rev. B. 40 (13), 9342–9345 (1989).
doi: 10.1103/PhysRevB.40.9342
Fang, H. et al. Noninvasive sizing of subcellular organelles with light scattering spectroscopy. IEEE J. Sel. Top. Quantum Electron. 9 (2), 267–276 (2003).
doi: 10.1109/JSTQE.2003.812515
Mishchenko, M. I., Travis, L. D. & Macke, A. Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35 (24), 4927 (1996).
pubmed: 21102919 doi: 10.1364/AO.35.004927
Virtanen, P. et al. T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods 17(3), 261–272 (2020).

Auteurs

Michael D Singh (MD)

Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada. michaeldhillon.singh@mail.utoronto.ca.
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada. michaeldhillon.singh@mail.utoronto.ca.

Lan Anna Ye (LA)

Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.

Michael Woolman (M)

Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.

Francis Talbot (F)

Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.

Arash Zarrine-Asfar (A)

Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
Department of Surgery, University of Toronto, Toronto, ON, M5T 1P5, Canada.
Keenan Research Center for Biomedical Science & the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, M5B 1W8, Canada.

Alex Vitkin (A)

Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.
Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.
Department of Radiation Oncology, University of Toronto, Toronto, ON, M5T 1P5, Canada.
Division of Biophysics and Bioimaging, Princess Margaret Cancer Centre, Toronto, ON, M5G 1L7, Canada.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH