Reflection mode polarimetry guides laser mass spectrometry to diagnostically important regions of human breast cancer tissue.
Breast cancer
Degree of polarization
Image guidance
Laser mass spectrometry
Polarimetry
Segmentation
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
03
06
2024
accepted:
28
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
To enhance the clinical utility of mass spectrometry (MS), lengthy dwell times on less informative regions of patient specimens (e.g., adipose tissue in breast) must be minimized. Additionally, a promising variant of MS known as picosecond infrared laser MS (PIRL-MS) faces further challenges, namely, lipid contamination when probing adipose tissue. Here we demonstrate on several thick non-sectioned resected human breast specimens (healthy and malignant) that reflection-mode polarimetric imaging can robustly guide PIRL-MS toward regions devoid of significant fat content to (1) avoid signal contamination and (2) shorten overall MS analysis times. Through polarimetric targeting of non-fat regions, PIRL-MS sampling revealed feature-rich spectral signatures including several known breast cancer markers. Polarimetric guidance mapping was enabled by circular degree-of-polarization (DOP) imaging via both Stokes and Mueller matrix polarimetry. These results suggest a potential synergistic hybrid approach employing polarimetry as a wide-field-imaging guidance tool to optimize efficient probing of tissue molecular content using MS.
Identifiants
pubmed: 39482347
doi: 10.1038/s41598-024-77963-w
pii: 10.1038/s41598-024-77963-w
doi:
Substances chimiques
Biomarkers, Tumor
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26230Subventions
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : CIHR
ID : CIHR, PJT-156110
Pays : Canada
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2018-04930
Organisme : Natural Sciences and Engineering Research Council of Canada
ID : RGPIN-2018-04930
Organisme : New Frontiers in Research Fund
ID : NFRFE-2019-01049
Organisme : New Frontiers in Research Fund
ID : NFRFE-2019-01049
Informations de copyright
© 2024. The Author(s).
Références
Woolman, M. et al. and A. Zarrine-Afsar, Picosecond infrared laser desorption mass spectrometry identifies medulloblastoma subgroups on intrasurgical timescales, Cancer Res 79(9), 2426–2434 (2019).
Woolman, M. et al. Lipidomic-Based Approach to 10 s classification of Major Pediatric Brain Cancer types with Picosecond Infrared Laser Mass Spectrometry. Anal. Chem. 96 (3), 1019–1028 (2024).
pubmed: 38190738
pmcid: 10809247
doi: 10.1021/acs.analchem.3c03156
Katz, L. et al. Picosecond Infrared Laser Mass Spectrometry Identifies a Metabolite Array for 10 s Diagnosis of Select Skin Cancer Types: A Proof-of-Concept Feasibility Study. Anal. Chem. 94 (48), 16821–16830 (2022).
pubmed: 36395434
doi: 10.1021/acs.analchem.2c03918
Woolman, M. et al. Rapid determination of medulloblastoma subgroup affiliation with mass spectrometry using a handheld picosecond infrared laser desorption probe. Chem. Sci. 8 (9), 6508–6519 (2017).
pubmed: 28989676
pmcid: 5628578
doi: 10.1039/C7SC01974B
Ifa, D. R. & Eberlin, L. S. Ambient ionization mass spectrometry for cancer diagnosis and surgical margin evaluation. Clin. Chem. 62 (1), 111–123 (2016).
pubmed: 26555455
doi: 10.1373/clinchem.2014.237172
Woolman, M. et al. Optimized Mass Spectrometry Analysis Workflow with Polarimetric Guidance for ex vivo and in situ Sampling of Biological Tissues. Sci. Rep. 7 (1), 1–12 (2017).
doi: 10.1038/s41598-017-00272-y
Hänel, L., Kwiatkowski, M., Heikaus, L. & Schlüter, H. Mass spectrometry-based intraoperative tumor diagnostics. Future Sci. OA 5(3), (2019). https://doi.org/10.4155/fsoa-2018-0087
Woolman, M., Katz, L., Tata, A., Basu, S. S. & Zarrine-Afsar, A. Breaking Through the Barrier: Regulatory Considerations Relevant to Ambient Mass Spectrometry at the Bedside. Clin. Lab. Med. 41 (2), 221–246 (2021).
pubmed: 34020761
doi: 10.1016/j.cll.2021.03.004
Woolman, M. et al. In situ tissue pathology from spatially encoded mass spectrometry classifiers visualized in real time through augmented reality. Chem. Sci. 11 (33), 8723–8735 (2020).
pubmed: 34123126
pmcid: 8163395
doi: 10.1039/D0SC02241A
Calligaris, D. et al. Application of desorption electrospray ionization mass spectrometry imaging in breast cancer margin analysis. Proc. Natl. Acad. Sci. U S A. 111 (42), 15184–15189 (2014).
pubmed: 25246570
pmcid: 4210338
doi: 10.1073/pnas.1408129111
Singh, M. D., Ghosh, N. & Vitkin, I. A. Mueller Matrix Polarimetry in Biomedicine: Enabling Technology, Biomedical Applications, and Future Prospects, in Polarized Light in Biomedical Imaging and Sensing, (eds Ramella-Roman, J. C. & Novikova, T.) (Springer International Publishing, 61–103. (2023).
doi: 10.1007/978-3-031-04741-1_3
He, C. et al. Polarisation optics for biomedical and clinical applications: a review. Light Sci. Appl. 10 (1), 194 (2021).
pubmed: 34552045
pmcid: 8458371
doi: 10.1038/s41377-021-00639-x
Tata, A. et al. Wide-field tissue polarimetry allows efficient localized mass spectrometry imaging of biological tissues. Chem. Sci. 7 (3), 2162–2169 (2016).
pubmed: 30155015
doi: 10.1039/C5SC03782D
Tata, A. et al. Rapid detection of necrosis in breast cancer with desorption electrospray ionization mass spectrometry. Sci. Rep. 6 (October), 1–10 (2016).
Qi, J. et al. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat. Biomed. Eng. 7, 971–985 (2023). https://doi.org/10.1038/s41551-023-01018-0
Liu, T. et al. Comparative study of the imaging contrasts of Mueller matrix derived parameters between transmission and backscattering polarimetry. Biomed. Opt. Express. 9 (9), 4413 (2018).
pubmed: 30615708
pmcid: 6157769
doi: 10.1364/BOE.9.004413
Sharma, M. et al. Histopathological correlations of bulk tissue polarimetric images: Case study. J. Biophotonics. 14 (5), 1–12 (2021).
doi: 10.1002/jbio.202000475
Nazari, S. S. & Mukherjee, P. An overview of mammographic density and its association with breast cancer. Breast Cancer. 25 (3), 259–267 (2018).
pubmed: 29651637
doi: 10.1007/s12282-018-0857-5
Berry, R. et al. Imaging of Adipose Tissue 1st edn 537 (Elsevier Inc., 2014).
Antonelli, M. R. et al. Mueller matrix imaging of human colon tissue for cancer diagnostics: how Monte Carlo modeling can help in the interpretation of experimental data. Opt. Express. 18 (10), 10200 (2010).
pubmed: 20588874
doi: 10.1364/OE.18.010200
Novikova, T. et al. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl. Phys. Lett. 102 (24), 241103 (2013).
doi: 10.1063/1.4811414
Sun, M. et al. Probing microstructural information of anisotropic scattering media using rotation-independent polarization parameters. Appl. Opt. 53 (14), 2949 (2014).
pubmed: 24922012
doi: 10.1364/AO.53.002949
Lu, S. Y. & Chipman, R. A. Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A. 13 (5), 1106 (1996).
doi: 10.1364/JOSAA.13.001106
Schwartz, C. & Dogariu, A. Backscattered polarization patterns determined by conservation of angular momentum. J. Opt. Soc. Am. A. 25 (2), 431 (2008).
doi: 10.1364/JOSAA.25.000431
Bohren, C. F. & Huffman, D. R. Absorption and Scattering by a Sphere, in Absorption and Scattering of Light by Small Particles (Wiley-VCH Verlag GmbH, 7(1), 82–129. (2007).
Chen, Z., Yao, Y., Zhu, Y. & Ma, H. Removing the dichroism and retardance artifacts in a collinear backscattering Mueller matrix imaging system. Opt. Express. 26 (22), 28288 (2018).
pubmed: 30470003
doi: 10.1364/OE.26.028288
Gramatikov, B. I. A Mueller matrix approach to flat gold mirror analysis and polarization balancing for use in retinal birefringence scanning systems. Optik (Stuttg). 207 (February), 164474 (2020).
doi: 10.1016/j.ijleo.2020.164474
Baba, J. S., Chung, J. R., DeLaughter, A. H., Cameron, B. D. & Coté, G. L. Development and calibration of an automated Mueller matrix polarization imaging system. J. Biomed. Opt. 7 (3), 341 (2002).
pubmed: 12175283
doi: 10.1117/1.1486248
Pardo, I. et al. Wide-field Mueller matrix polarimetry for spectral characterization of basic biological tissues: Muscle, fat, connective tissue, and skin. J. Biophotonics 17 (1), (2023).
Sankaran, V., Walsh, J. T. & Maitland, D. J. Comparative study of polarized light propagation in biologic tissues. J. Biomed. Opt. 7 (3), 300 (2002).
pubmed: 12175278
doi: 10.1117/1.1483318
Singh, M. D. & Vitkin, I. A. Discriminating turbid media by scatterer size and scattering coefficient using backscattered linearly and circularly polarized light. Biomed. Opt. Express. 12 (11), 6831 (2021).
pubmed: 34858683
pmcid: 8606157
doi: 10.1364/BOE.438631
Nader, C. A. et al. Influence of size, proportion, and absorption coefficient of spherical scatterers on the degree of light polarization and the grain size of speckle pattern. Appl. Opt. 54 (35), 10369 (2015).
pubmed: 26836860
doi: 10.1364/AO.54.010369
Sun, P. & Wang, Y. Measurements of optical parameters of phantom solution and bulk animal tissues in vitro at 650 nm. Opt. Laser Technol. 42 (1), 1–7 (2010).
doi: 10.1016/j.optlastec.2009.06.001
Jacques, S. L., Roman, J. R. & Lee, K. Imaging superficial tissues with polarized light. Lasers Surg. Med. 26 (2), 119 (2000).
pubmed: 10685085
doi: 10.1002/(SICI)1096-9101(2000)26:2<119::AID-LSM3>3.0.CO;2-Y
Pezzaniti, J. L. & Chipman, R. A. Angular dependence of polarizing beam-splitter cubes. Appl. Opt. 33 (10), 1916 (1994).
doi: 10.1364/AO.33.001916
Wang, X. et al. Image reconstruction of effective Mie scattering parameters of breast tissue in vivo with near-infrared tomography. J. Biomed. Opt. 11 (4), 041106 (2006).
pubmed: 16965134
doi: 10.1117/1.2342747
Wang, X. et al. Approximation of Mie scattering parameters in near-infrared tomography of normal breast tissue in vivo. J. Biomed. Opt. 10 (5), 051704 (2005).
pubmed: 16292956
doi: 10.1117/1.2098607
Suárez–Nájera, L. E. et al. Castro– Reyes, Morphometric study of adipocytes on breast cancer by means of photonic microscopy and image analysis. Microsc Res. Tech. 81 (2), 240–249 (2018).
pubmed: 29193620
doi: 10.1002/jemt.22972
Bartek, M., Wang, X., Wells, W., Paulsen, K. D. & Pogue, B. W. Estimation of subcellular particle size histograms with electron microscopy for prediction of optical scattering in breast tissue. J. Biomed. Opt. 11 (6), 064007 (2006).
pubmed: 17212530
doi: 10.1117/1.2398903
Bodelon, C. et al. Mammary collagen architecture and its association with mammographic density and lesion severity among women undergoing image-guided breast biopsy. Breast Cancer Res. 23 (1), 1–14 (2021).
doi: 10.1186/s13058-021-01482-z
Arifler, D., Pavlova, I., Gillenwater, A. & Richards-Kortum, R. Light scattering from collagen fiber networks: micro-optical properties of normal and neoplastic stroma. Biophys. J. 92 (9), 3260–3274 (2007).
pubmed: 17307834
pmcid: 1852360
doi: 10.1529/biophysj.106.089839
Bevilacqua, F., Marquet, P., Coquoz, O. & Depeursinge, C. Role of tissue structure in photon migration through breast tissues. Appl. Opt. 36 (1), 44 (1997).
pubmed: 18250646
doi: 10.1364/AO.36.000044
Singh, M. D. & Vitkin, I. A. Spatial helicity response metric to quantify particle size and turbidity of heterogeneous media through circular polarization imaging. Sci. Rep. 13 (1), 2231 (2023).
pubmed: 36755076
pmcid: 9908950
doi: 10.1038/s41598-023-29444-9
Macdonald, C. M., Jacques, S. L. & Meglinski, I. V. Circular polarization memory in polydisperse scattering media. Phys. Rev. E. 91 (3), 033204 (2015).
doi: 10.1103/PhysRevE.91.033204
MacKintosh, F. C., Zhu, J. X., Pine, D. J. & Weitz, D. A. Polarization memory of multiply scattered light. Phys. Rev. B. 40 (13), 9342–9345 (1989).
doi: 10.1103/PhysRevB.40.9342
Fang, H. et al. Noninvasive sizing of subcellular organelles with light scattering spectroscopy. IEEE J. Sel. Top. Quantum Electron. 9 (2), 267–276 (2003).
doi: 10.1109/JSTQE.2003.812515
Mishchenko, M. I., Travis, L. D. & Macke, A. Scattering of light by polydisperse, randomly oriented, finite circular cylinders. Appl. Opt. 35 (24), 4927 (1996).
pubmed: 21102919
doi: 10.1364/AO.35.004927
Virtanen, P. et al. T. Krauss, U. Upadhyay, Y. O. Halchenko, and Y. Vázquez-Baeza, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat Methods 17(3), 261–272 (2020).