High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.
3D-reconstructed airway epithelial cells
Airway-on-a-chip
Organotypic culture
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
17
06
2024
accepted:
24
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Airway inflammation, a protective response in the human body, can disrupt normal organ function when chronic, as seen in chronic obstructive pulmonary disease (COPD) and asthma. Chronic bronchitis induces goblet cell hyperplasia and metaplasia, obstructing airflow. Traditional animal testing is often replaced by in vitro three-dimensional cultures of human epithelial cells to assess chronic cell responses. However, these cells are cultured horizontally, differing from the tubular structure of the human airway and failing to accurately reproduce airway stenosis. To address this, we developed the Bronchus-on-a-Chip (BoC) system. The BoC uses a novel microfluidic design in a standard laboratory plate, embedding 62 chips in one plate. Human bronchial epithelial cells were cultured against a collagen extracellular matrix for up to 35 days. Characterization included barrier integrity assays, microscopy, and histological examination. Cells successfully cultured in a tubular structure, with the apical side air-lifted. Epithelial cells differentiated into basal, ciliated, and secretory cells, mimicking human bronchial epithelium. Upon exposure to inducers of goblet cell hyperplasia and metaplasia, the BoC system showed mucus hyperproduction, replicating chronic epithelial responses. This BoC system enhances in vitro testing for bronchial inflammation, providing a more human-relevant and high-throughput method.
Identifiants
pubmed: 39482373
doi: 10.1038/s41598-024-77665-3
pii: 10.1038/s41598-024-77665-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26248Informations de copyright
© 2024. The Author(s).
Références
ICRP, Annals of the ICRP. Human Respiratory Tract Model for Radiological Protection, ed. I.P. 66. Vol. 24. (1994).
Livraghi, A. & Randell, S. H. Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol. Pathol. 35 (1), 116–129 (2007).
pubmed: 17325980
doi: 10.1080/01926230601060025
Crystal, R. G. et al. Airway epithelial cells: current concepts and challenges. Proc. Am. Thorac. Soc. 5 (7), 772–777 (2008).
pubmed: 18757316
pmcid: 5820806
doi: 10.1513/pats.200805-041HR
Aghasafari, P., George, U. & Pidaparti, R. A review of inflammatory mechanism in airway diseases. Inflamm. Res. 68 (1), 59–74 (2019).
pubmed: 30306206
doi: 10.1007/s00011-018-1191-2
LARSEN, G. L. & HOLT, P. G. The Concept of Airway inflammation. Am. J. Respir. Crit Care Med. 162 (supplement_1), S2–S6 (2000).
pubmed: 10934122
doi: 10.1164/ajrccm.162.supplement_1.maic-1
Holz, R. A., Jörres & Magnussen, H. Monitoring central and peripheral airway inflammation in asthma. Respir. Med. 94 Suppl D, S7-12 (2000).
Bousquet, J. et al. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir Crit. Care Med. 161 (5), 1720–1745 (2000).
pubmed: 10806180
doi: 10.1164/ajrccm.161.5.9903102
Jeffery, P. K. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir Crit. Care Med. 164 (10 Pt 2), S28-38 (2001).
pubmed: 11734464
doi: 10.1164/ajrccm.164.supplement_2.2106061
Rogers, D. F. Airway goblet cell hyperplasia in asthma: hypersecretory and anti-inflammatory?. Clin. Exp. Allergy. 32 (8), 1124–1127 (2002).
pubmed: 12190646
doi: 10.1046/j.1365-2745.2002.01474.x
Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N Engl. J. Med. 363 (23), 2233–2247 (2010).
pubmed: 21121836
pmcid: 4048736
doi: 10.1056/NEJMra0910061
Wright, J. L., Cosio, M. & Churg, A. Animal models of chronic obstructive pulmonary disease. Am. J. Physiology-Lung Cell. Mol. Physiol. 295 (1), L1–L15 (2008).
doi: 10.1152/ajplung.90200.2008
Sécher, T. et al. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv. Drug Deliv. Rev. 167, 148–169 (2020).
pubmed: 32645479
doi: 10.1016/j.addr.2020.06.029
Pauluhn, J. & Mohr, U. Review article: inhalation studies in laboratory animals—current concepts and alternatives. Toxicol. Pathol. 28 (5), 734–753 (2000).
pubmed: 11026610
doi: 10.1177/019262330002800514
Krewski, D. et al. Toxicity testing in the 21st Century: a vision and a strategy. J. Toxicol. Environ. Health Part. B. 13 (2–4), 51–138 (2010).
doi: 10.1080/10937404.2010.483176
Prytherch, Z. et al. Tissue-specific stem cell differentiation in an in vitro airway model. Macromol. Biosci. 11 (11), 1467–1477 (2011).
pubmed: 21994115
doi: 10.1002/mabi.201100181
Hiemstra, P. S. et al. Human lung epithelial cell cultures for analysis of inhaled toxicants: lessons learned and future directions. Toxicol. In Vitro. 47, 137–146 (2018).
pubmed: 29155131
doi: 10.1016/j.tiv.2017.11.005
Casalino-Matsuda, S. M., Monzón, M. E. & Forteza, R. M. Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am. J. Respir Cell. Mol. Biol. 34 (5), 581–591 (2006).
pubmed: 16424381
pmcid: 2644222
doi: 10.1165/rcmb.2005-0386OC
Kistemaker, L. E. M. et al. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax. 70 (7), 668–676 (2015).
pubmed: 25995156
doi: 10.1136/thoraxjnl-2014-205731
Kimura, H., Sakai, Y. & Fujii, T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 33 (1), 43–48 (2018).
pubmed: 29175062
doi: 10.1016/j.dmpk.2017.11.003
Wu, Q. et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. Online. 19 (1), 9 (2020).
pubmed: 32050989
pmcid: 7017614
doi: 10.1186/s12938-020-0752-0
Azizgolshani, H. et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab. Chip. 21 (8), 1454–1474 (2021).
pubmed: 33881130
doi: 10.1039/D1LC00067E
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662–1668 (2010).
pubmed: 20576885
pmcid: 8335790
doi: 10.1126/science.1188302
Jang, K. J. & Suh, K. Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab. Chip. 10 (1), 36–42 (2010).
pubmed: 20024048
doi: 10.1039/B907515A
Sengupta, A. et al. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front. Pharmacol. 14, 1114739 (2023).
pubmed: 36959848
pmcid: 10029733
doi: 10.3389/fphar.2023.1114739
Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods. 13 (2), 151–157 (2016).
pubmed: 26689262
doi: 10.1038/nmeth.3697
Lagowala, D. A. et al. Human microphysiological models of airway and alveolar epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 321 (6), L1072-l1088 (2021).
pubmed: 34612064
pmcid: 8715018
doi: 10.1152/ajplung.00103.2021
Park, S. & Young, E. W. K. Extractable floating liquid gel-based organ-on-a-chip for airway tissue modeling under airflow. Adv. Mater. Technol. 6 (12), 2100828 (2021).
doi: 10.1002/admt.202100828
Gao, W. et al. Collagen tubular airway-on-chip for extended epithelial culture and investigation of ventilation dynamics. Small. 20 (27), e2309270 (2024).
Bonanini, F. et al. In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed. Angiogenesis. 25 (4), 455–470 (2022).
pubmed: 35704148
pmcid: 9519670
doi: 10.1007/s10456-022-09842-9
Vulto, P. et al. Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab. Chip. 11 (9), 1596–1602 (2011).
pubmed: 21394334
doi: 10.1039/c0lc00643b
Booth, B. W. et al. Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-alpha. Am. J. Respir Cell. Mol. Biol. 25 (6), 739–743 (2001).
pubmed: 11726400
doi: 10.1165/ajrcmb.25.6.4659
Gohy, S. et al. Altered generation of ciliated cells in chronic obstructive pulmonary disease. Sci. Rep. 9 (1), 17963 (2019).
pubmed: 31784664
pmcid: 6884487
doi: 10.1038/s41598-019-54292-x
Rayner, R. E. et al. Optimization of normal human bronchial epithelial (NHBE) cell 3D cultures for in vitro lung model studies. Sci. Rep. 9 (1), 500 (2019).
pubmed: 30679531
pmcid: 6346027
doi: 10.1038/s41598-018-36735-z
Schamberger, A. C. et al. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci. Rep. 5 (1), 8163 (2015).
pubmed: 25641363
pmcid: 4313097
doi: 10.1038/srep08163
Celly, C. S. et al. Temporal profile of forced expiratory lung function in allergen-challenged Brown–Norway rats. Eur. J. Pharmacol. 540 (1), 147–154 (2006).
pubmed: 16756974
doi: 10.1016/j.ejphar.2006.04.020
Varricchi, G. et al. Biologics and airway remodeling in severe asthma. Allergy. 77 (12), 3538–3552 (2022).
pubmed: 35950646
doi: 10.1111/all.15473
Heijink, I. H. et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 75 (8), 1902–1917 (2020).
pubmed: 32460363
doi: 10.1111/all.14421
Ancel, J. et al. Impaired ciliary beat frequency and ciliogenesis alteration during airway epithelial cell differentiation in COPD. Diagnostics. 11 (9), 1579 (2021).
pubmed: 34573921
pmcid: 8469815
doi: 10.3390/diagnostics11091579
O’Boyle, N. et al. Optimisation of growth conditions for ovine airway epithelial cell differentiation at an air-liquid interface. PLOS ONE. 13 (3), e0193998 (2018).
pubmed: 29518140
pmcid: 5843276
doi: 10.1371/journal.pone.0193998
Shaykhiev, R. et al. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc. Natl. Acad. Sci. 110 (29), 12102–12107 (2013).
pubmed: 23818594
pmcid: 3718120
doi: 10.1073/pnas.1303058110
Curran, D. R. & Cohn, L. Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am. J. Respir Cell. Mol. Biol. 42 (3), 268–275 (2010).
pubmed: 19520914
doi: 10.1165/rcmb.2009-0151TR
Perrais, M. et al. Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF Receptor/Ras/Raf/Extracellular Signal-Regulated Kinase Cascade and Sp1*. J. Biol. Chem. 277 (35), 32258–32267 (2002).
pubmed: 12077147
doi: 10.1074/jbc.M204862200
Atherton, H. C., Jones, G. & Danahay, H. IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am. J. Physiology-Lung Cell. Mol. Physiol. 285 (3), L730–L739 (2003).
doi: 10.1152/ajplung.00089.2003
Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science. 282 (5397), 2258–2261 (1998).
pubmed: 9856949
doi: 10.1126/science.282.5397.2258
Eenjes, E. et al. A novel method for expansion and differentiation of mouse tracheal epithelial cells in culture. Sci. Rep. 8 (1), 7349 (2018).
pubmed: 29743551
pmcid: 5943313
doi: 10.1038/s41598-018-25799-6
Thorne, D. & Adamson, J. A review of in vitro cigarette smoke exposure systems. Exp. Toxicol. Pathol. 65 (7), 1183–1193 (2013).
pubmed: 23850067
doi: 10.1016/j.etp.2013.06.001
Chandrala, L. D. et al. A device for measuring the in-situ response of human bronchial epithelial cells to airborne environmental agents. Sci. Rep. 9 (1), 7263 (2019).
pubmed: 31086226
pmcid: 6513995
doi: 10.1038/s41598-019-43784-5
Ding, Y. et al. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL
pubmed: 32938469
pmcid: 7493184
doi: 10.1186/s12989-020-00376-w
Oldham, M. J. et al. Comparison of experimentally measured and computational fluid dynamic predicted deposition and deposition uniformity of monodisperse solid particles in the Vitrocell
pubmed: 32330563
doi: 10.1016/j.tiv.2020.104870
Sidhaye, V. K. et al. Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proc. Natl. Acad. Sci. 105 (9), 3345–3350 (2008).
pubmed: 18305162
pmcid: 2265191
doi: 10.1073/pnas.0712287105
Gupta, G. et al. Development of Microfluidic, Serum-Free Bronchial Epithelial Cells-on-a-Chip to Facilitate a More Realistic In vitro Testing of Nanoplastics3 (Frontiers in Toxicology, 2021).
Sone, N. et al. Multicellular modeling of ciliopathy by combining iPS cells and microfluidic airway-on-a-chip technology. Sci. Transl. Med. 13 (601), eabb1298 (2021).
Ito, S., Ishimori, K. & Ishikawa, S. Effects of repeated cigarette smoke extract exposure over one month on human bronchial epithelial organotypic culture. Toxicol. Rep. 5, 864–870 (2018).
pubmed: 30167377
pmcid: 6111042
doi: 10.1016/j.toxrep.2018.08.015
Atkinson, J. J. & Senior, R. M. Matrix Metalloproteinase-9 in lung remodeling. Am. J. Respir. Cell Mol. Biol. 28 (1), 12–24 (2003).
pubmed: 12495928
doi: 10.1165/rcmb.2002-0166TR
Houghton, A. M. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 44-46, 167–174 (2015).
pubmed: 25686691
doi: 10.1016/j.matbio.2015.02.002
Mori, S. et al. Donor-to-donor variability of a human three-dimensional bronchial epithelial model: a case study of cigarette smoke exposure. Toxicol. In Vitro. 82, 105391 (2022).
pubmed: 35595035
doi: 10.1016/j.tiv.2022.105391
Muratani, S. et al. Oxidative stress-mediated epidermal growth factor receptor activation by cigarette smoke or heated tobacco aerosol in human primary bronchial epithelial cells from multiple donors. J. Appl. Toxicol. 43 (9), 1347–1357 (2023).
pubmed: 36946243
doi: 10.1002/jat.4469
Khelloufi, M. K. et al. Spatiotemporal organization of cilia drives multiscale mucus swirls in model human bronchial epithelium. Sci. Rep. 8 (1), 2447 (2018).
pubmed: 29402960
pmcid: 5799192
doi: 10.1038/s41598-018-20882-4
Sisson, J. H. et al. All-digital image capture and whole-field analysis of ciliary beat frequency. J. Microsc. 211 (Pt 2), 103–111 (2003).
pubmed: 12887704
doi: 10.1046/j.1365-2818.2003.01209.x