High-throughput Bronchus-on-a-Chip system for modeling the human bronchus.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 17 06 2024
accepted: 24 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Airway inflammation, a protective response in the human body, can disrupt normal organ function when chronic, as seen in chronic obstructive pulmonary disease (COPD) and asthma. Chronic bronchitis induces goblet cell hyperplasia and metaplasia, obstructing airflow. Traditional animal testing is often replaced by in vitro three-dimensional cultures of human epithelial cells to assess chronic cell responses. However, these cells are cultured horizontally, differing from the tubular structure of the human airway and failing to accurately reproduce airway stenosis. To address this, we developed the Bronchus-on-a-Chip (BoC) system. The BoC uses a novel microfluidic design in a standard laboratory plate, embedding 62 chips in one plate. Human bronchial epithelial cells were cultured against a collagen extracellular matrix for up to 35 days. Characterization included barrier integrity assays, microscopy, and histological examination. Cells successfully cultured in a tubular structure, with the apical side air-lifted. Epithelial cells differentiated into basal, ciliated, and secretory cells, mimicking human bronchial epithelium. Upon exposure to inducers of goblet cell hyperplasia and metaplasia, the BoC system showed mucus hyperproduction, replicating chronic epithelial responses. This BoC system enhances in vitro testing for bronchial inflammation, providing a more human-relevant and high-throughput method.

Identifiants

pubmed: 39482373
doi: 10.1038/s41598-024-77665-3
pii: 10.1038/s41598-024-77665-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26248

Informations de copyright

© 2024. The Author(s).

Références

ICRP, Annals of the ICRP. Human Respiratory Tract Model for Radiological Protection, ed. I.P. 66. Vol. 24. (1994).
Livraghi, A. & Randell, S. H. Cystic fibrosis and other respiratory diseases of impaired mucus clearance. Toxicol. Pathol. 35 (1), 116–129 (2007).
pubmed: 17325980 doi: 10.1080/01926230601060025
Crystal, R. G. et al. Airway epithelial cells: current concepts and challenges. Proc. Am. Thorac. Soc. 5 (7), 772–777 (2008).
pubmed: 18757316 pmcid: 5820806 doi: 10.1513/pats.200805-041HR
Aghasafari, P., George, U. & Pidaparti, R. A review of inflammatory mechanism in airway diseases. Inflamm. Res. 68 (1), 59–74 (2019).
pubmed: 30306206 doi: 10.1007/s00011-018-1191-2
LARSEN, G. L. & HOLT, P. G. The Concept of Airway inflammation. Am. J. Respir. Crit Care Med. 162 (supplement_1), S2–S6 (2000).
pubmed: 10934122 doi: 10.1164/ajrccm.162.supplement_1.maic-1
Holz, R. A., Jörres & Magnussen, H. Monitoring central and peripheral airway inflammation in asthma. Respir. Med. 94 Suppl D, S7-12 (2000).
Bousquet, J. et al. Asthma. From bronchoconstriction to airways inflammation and remodeling. Am. J. Respir Crit. Care Med. 161 (5), 1720–1745 (2000).
pubmed: 10806180 doi: 10.1164/ajrccm.161.5.9903102
Jeffery, P. K. Remodeling in asthma and chronic obstructive lung disease. Am. J. Respir Crit. Care Med. 164 (10 Pt 2), S28-38 (2001).
pubmed: 11734464 doi: 10.1164/ajrccm.164.supplement_2.2106061
Rogers, D. F. Airway goblet cell hyperplasia in asthma: hypersecretory and anti-inflammatory?. Clin. Exp. Allergy. 32 (8), 1124–1127 (2002).
pubmed: 12190646 doi: 10.1046/j.1365-2745.2002.01474.x
Fahy, J. V. & Dickey, B. F. Airway mucus function and dysfunction. N Engl. J. Med. 363 (23), 2233–2247 (2010).
pubmed: 21121836 pmcid: 4048736 doi: 10.1056/NEJMra0910061
Wright, J. L., Cosio, M. & Churg, A. Animal models of chronic obstructive pulmonary disease. Am. J. Physiology-Lung Cell. Mol. Physiol. 295 (1), L1–L15 (2008).
doi: 10.1152/ajplung.90200.2008
Sécher, T. et al. Correlation and clinical relevance of animal models for inhaled pharmaceuticals and biopharmaceuticals. Adv. Drug Deliv. Rev. 167, 148–169 (2020).
pubmed: 32645479 doi: 10.1016/j.addr.2020.06.029
Pauluhn, J. & Mohr, U. Review article: inhalation studies in laboratory animals—current concepts and alternatives. Toxicol. Pathol. 28 (5), 734–753 (2000).
pubmed: 11026610 doi: 10.1177/019262330002800514
Krewski, D. et al. Toxicity testing in the 21st Century: a vision and a strategy. J. Toxicol. Environ. Health Part. B. 13 (2–4), 51–138 (2010).
doi: 10.1080/10937404.2010.483176
Prytherch, Z. et al. Tissue-specific stem cell differentiation in an in vitro airway model. Macromol. Biosci. 11 (11), 1467–1477 (2011).
pubmed: 21994115 doi: 10.1002/mabi.201100181
Hiemstra, P. S. et al. Human lung epithelial cell cultures for analysis of inhaled toxicants: lessons learned and future directions. Toxicol. In Vitro. 47, 137–146 (2018).
pubmed: 29155131 doi: 10.1016/j.tiv.2017.11.005
Casalino-Matsuda, S. M., Monzón, M. E. & Forteza, R. M. Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am. J. Respir Cell. Mol. Biol. 34 (5), 581–591 (2006).
pubmed: 16424381 pmcid: 2644222 doi: 10.1165/rcmb.2005-0386OC
Kistemaker, L. E. M. et al. Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax. 70 (7), 668–676 (2015).
pubmed: 25995156 doi: 10.1136/thoraxjnl-2014-205731
Kimura, H., Sakai, Y. & Fujii, T. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Drug Metab. Pharmacokinet. 33 (1), 43–48 (2018).
pubmed: 29175062 doi: 10.1016/j.dmpk.2017.11.003
Wu, Q. et al. Organ-on-a-chip: recent breakthroughs and future prospects. Biomed. Eng. Online. 19 (1), 9 (2020).
pubmed: 32050989 pmcid: 7017614 doi: 10.1186/s12938-020-0752-0
Azizgolshani, H. et al. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. Lab. Chip. 21 (8), 1454–1474 (2021).
pubmed: 33881130 doi: 10.1039/D1LC00067E
Huh, D. et al. Reconstituting organ-level lung functions on a chip. Science. 328 (5986), 1662–1668 (2010).
pubmed: 20576885 pmcid: 8335790 doi: 10.1126/science.1188302
Jang, K. J. & Suh, K. Y. A multi-layer microfluidic device for efficient culture and analysis of renal tubular cells. Lab. Chip. 10 (1), 36–42 (2010).
pubmed: 20024048 doi: 10.1039/B907515A
Sengupta, A. et al. A multiplex inhalation platform to model in situ like aerosol delivery in a breathing lung-on-chip. Front. Pharmacol. 14, 1114739 (2023).
pubmed: 36959848 pmcid: 10029733 doi: 10.3389/fphar.2023.1114739
Benam, K. H. et al. Small airway-on-a-chip enables analysis of human lung inflammation and drug responses in vitro. Nat. Methods. 13 (2), 151–157 (2016).
pubmed: 26689262 doi: 10.1038/nmeth.3697
Lagowala, D. A. et al. Human microphysiological models of airway and alveolar epithelia. Am. J. Physiol. Lung Cell. Mol. Physiol. 321 (6), L1072-l1088 (2021).
pubmed: 34612064 pmcid: 8715018 doi: 10.1152/ajplung.00103.2021
Park, S. & Young, E. W. K. Extractable floating liquid gel-based organ-on-a-chip for airway tissue modeling under airflow. Adv. Mater. Technol. 6 (12), 2100828 (2021).
doi: 10.1002/admt.202100828
Gao, W. et al. Collagen tubular airway-on-chip for extended epithelial culture and investigation of ventilation dynamics. Small. 20 (27), e2309270 (2024).
Bonanini, F. et al. In vitro grafting of hepatic spheroids and organoids on a microfluidic vascular bed. Angiogenesis. 25 (4), 455–470 (2022).
pubmed: 35704148 pmcid: 9519670 doi: 10.1007/s10456-022-09842-9
Vulto, P. et al. Phaseguides: a paradigm shift in microfluidic priming and emptying. Lab. Chip. 11 (9), 1596–1602 (2011).
pubmed: 21394334 doi: 10.1039/c0lc00643b
Booth, B. W. et al. Interleukin-13 induces proliferation of human airway epithelial cells in vitro via a mechanism mediated by transforming growth factor-alpha. Am. J. Respir Cell. Mol. Biol. 25 (6), 739–743 (2001).
pubmed: 11726400 doi: 10.1165/ajrcmb.25.6.4659
Gohy, S. et al. Altered generation of ciliated cells in chronic obstructive pulmonary disease. Sci. Rep. 9 (1), 17963 (2019).
pubmed: 31784664 pmcid: 6884487 doi: 10.1038/s41598-019-54292-x
Rayner, R. E. et al. Optimization of normal human bronchial epithelial (NHBE) cell 3D cultures for in vitro lung model studies. Sci. Rep. 9 (1), 500 (2019).
pubmed: 30679531 pmcid: 6346027 doi: 10.1038/s41598-018-36735-z
Schamberger, A. C. et al. Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci. Rep. 5 (1), 8163 (2015).
pubmed: 25641363 pmcid: 4313097 doi: 10.1038/srep08163
Celly, C. S. et al. Temporal profile of forced expiratory lung function in allergen-challenged Brown–Norway rats. Eur. J. Pharmacol. 540 (1), 147–154 (2006).
pubmed: 16756974 doi: 10.1016/j.ejphar.2006.04.020
Varricchi, G. et al. Biologics and airway remodeling in severe asthma. Allergy. 77 (12), 3538–3552 (2022).
pubmed: 35950646 doi: 10.1111/all.15473
Heijink, I. H. et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy. 75 (8), 1902–1917 (2020).
pubmed: 32460363 doi: 10.1111/all.14421
Ancel, J. et al. Impaired ciliary beat frequency and ciliogenesis alteration during airway epithelial cell differentiation in COPD. Diagnostics. 11 (9), 1579 (2021).
pubmed: 34573921 pmcid: 8469815 doi: 10.3390/diagnostics11091579
O’Boyle, N. et al. Optimisation of growth conditions for ovine airway epithelial cell differentiation at an air-liquid interface. PLOS ONE. 13 (3), e0193998 (2018).
pubmed: 29518140 pmcid: 5843276 doi: 10.1371/journal.pone.0193998
Shaykhiev, R. et al. EGF shifts human airway basal cell fate toward a smoking-associated airway epithelial phenotype. Proc. Natl. Acad. Sci. 110 (29), 12102–12107 (2013).
pubmed: 23818594 pmcid: 3718120 doi: 10.1073/pnas.1303058110
Curran, D. R. & Cohn, L. Advances in mucous cell metaplasia: a plug for mucus as a therapeutic focus in chronic airway disease. Am. J. Respir Cell. Mol. Biol. 42 (3), 268–275 (2010).
pubmed: 19520914 doi: 10.1165/rcmb.2009-0151TR
Perrais, M. et al. Induction of MUC2 and MUC5AC mucins by factors of the epidermal growth factor (EGF) family is mediated by EGF Receptor/Ras/Raf/Extracellular Signal-Regulated Kinase Cascade and Sp1*. J. Biol. Chem. 277 (35), 32258–32267 (2002).
pubmed: 12077147 doi: 10.1074/jbc.M204862200
Atherton, H. C., Jones, G. & Danahay, H. IL-13-induced changes in the goblet cell density of human bronchial epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am. J. Physiology-Lung Cell. Mol. Physiol. 285 (3), L730–L739 (2003).
doi: 10.1152/ajplung.00089.2003
Wills-Karp, M. et al. Interleukin-13: central mediator of allergic asthma. Science. 282 (5397), 2258–2261 (1998).
pubmed: 9856949 doi: 10.1126/science.282.5397.2258
Eenjes, E. et al. A novel method for expansion and differentiation of mouse tracheal epithelial cells in culture. Sci. Rep. 8 (1), 7349 (2018).
pubmed: 29743551 pmcid: 5943313 doi: 10.1038/s41598-018-25799-6
Thorne, D. & Adamson, J. A review of in vitro cigarette smoke exposure systems. Exp. Toxicol. Pathol. 65 (7), 1183–1193 (2013).
pubmed: 23850067 doi: 10.1016/j.etp.2013.06.001
Chandrala, L. D. et al. A device for measuring the in-situ response of human bronchial epithelial cells to airborne environmental agents. Sci. Rep. 9 (1), 7263 (2019).
pubmed: 31086226 pmcid: 6513995 doi: 10.1038/s41598-019-43784-5
Ding, Y. et al. Quartz crystal microbalances (QCM) are suitable for real-time dosimetry in nanotoxicological studies using VITROCELL
pubmed: 32938469 pmcid: 7493184 doi: 10.1186/s12989-020-00376-w
Oldham, M. J. et al. Comparison of experimentally measured and computational fluid dynamic predicted deposition and deposition uniformity of monodisperse solid particles in the Vitrocell
pubmed: 32330563 doi: 10.1016/j.tiv.2020.104870
Sidhaye, V. K. et al. Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proc. Natl. Acad. Sci. 105 (9), 3345–3350 (2008).
pubmed: 18305162 pmcid: 2265191 doi: 10.1073/pnas.0712287105
Gupta, G. et al. Development of Microfluidic, Serum-Free Bronchial Epithelial Cells-on-a-Chip to Facilitate a More Realistic In vitro Testing of Nanoplastics3 (Frontiers in Toxicology, 2021).
Sone, N. et al. Multicellular modeling of ciliopathy by combining iPS cells and microfluidic airway-on-a-chip technology. Sci. Transl. Med. 13 (601), eabb1298 (2021).
Ito, S., Ishimori, K. & Ishikawa, S. Effects of repeated cigarette smoke extract exposure over one month on human bronchial epithelial organotypic culture. Toxicol. Rep. 5, 864–870 (2018).
pubmed: 30167377 pmcid: 6111042 doi: 10.1016/j.toxrep.2018.08.015
Atkinson, J. J. & Senior, R. M. Matrix Metalloproteinase-9 in lung remodeling. Am. J. Respir. Cell Mol. Biol. 28 (1), 12–24 (2003).
pubmed: 12495928 doi: 10.1165/rcmb.2002-0166TR
Houghton, A. M. Matrix metalloproteinases in destructive lung disease. Matrix Biol. 44-46, 167–174 (2015).
pubmed: 25686691 doi: 10.1016/j.matbio.2015.02.002
Mori, S. et al. Donor-to-donor variability of a human three-dimensional bronchial epithelial model: a case study of cigarette smoke exposure. Toxicol. In Vitro. 82, 105391 (2022).
pubmed: 35595035 doi: 10.1016/j.tiv.2022.105391
Muratani, S. et al. Oxidative stress-mediated epidermal growth factor receptor activation by cigarette smoke or heated tobacco aerosol in human primary bronchial epithelial cells from multiple donors. J. Appl. Toxicol. 43 (9), 1347–1357 (2023).
pubmed: 36946243 doi: 10.1002/jat.4469
Khelloufi, M. K. et al. Spatiotemporal organization of cilia drives multiscale mucus swirls in model human bronchial epithelium. Sci. Rep. 8 (1), 2447 (2018).
pubmed: 29402960 pmcid: 5799192 doi: 10.1038/s41598-018-20882-4
Sisson, J. H. et al. All-digital image capture and whole-field analysis of ciliary beat frequency. J. Microsc. 211 (Pt 2), 103–111 (2003).
pubmed: 12887704 doi: 10.1046/j.1365-2818.2003.01209.x

Auteurs

Akina Mori (A)

Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.

Marjolein Vermeer (M)

Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands.

Lenie J van den Broek (LJ)

Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands.

Jeroen Heijmans (J)

Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands.

Arnaud Nicolas (A)

Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands.

Josse Bouwhuis (J)

Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands.

Todd Burton (T)

Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands.

Kazushi Matsumura (K)

Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.

Kazuhiro Ohashi (K)

Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan.

Shigeaki Ito (S)

Scientific Product Assessment Center, Japan Tobacco Inc, 6-2, Umegaoka, Aoba-Ku, Yokohama, Kanagawa, 227-8512, Japan. shigeaki.ito@jt.com.

Bart Kramer (B)

Mimetas BV, De Limes 7 2342DH, Oegstgeest, The Netherlands.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH