Flavopiridol induces cell cycle arrest and apoptosis by interfering with CDK1 signaling pathway in human ovarian granulosa cells.
Humans
Flavonoids
/ pharmacology
Female
Apoptosis
/ drug effects
Granulosa Cells
/ drug effects
Piperidines
/ pharmacology
Signal Transduction
/ drug effects
Cell Cycle Checkpoints
/ drug effects
CDC2 Protein Kinase
/ metabolism
Cell Proliferation
/ drug effects
Oxidative Stress
/ drug effects
Mitochondria
/ drug effects
Apoptosis
Cell cycle arrest
Flavopiridol
Human ovarian granulosa cells
Oxidative stress
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
05
04
2024
accepted:
18
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Several clinical trials have been conducted to evaluate the use of flavopiridol (FP) to treat a variety of cancers, and almost all cancer drugs were found to be associated with toxicity and side effects. It is not clear whether the use of FP will affect the female reproductive system. Granulosa cells, as the important cells that constitute the follicle, play a crucial role in determining the reproductive ability of females. In this study, we investigated whether different concentrations of FP have a toxic effect on the growth of immortalized human ovarian granulosa cells. The results showed that FP had an inhibitory effect on cell proliferation at a level of nanomole concentration. FP reduced cell proliferation and induced apoptosis by inducing mitochondrial dysfunction and oxidative stress, as well as increasing BAX/BCL2 and pCDK1 levels. These results suggest that toxicity to the reproductive system should be considered when FP is used in clinical applications.
Identifiants
pubmed: 39482384
doi: 10.1038/s41598-024-77032-2
pii: 10.1038/s41598-024-77032-2
doi:
Substances chimiques
alvocidib
45AD6X575G
Flavonoids
0
Piperidines
0
CDC2 Protein Kinase
EC 2.7.11.22
CDK1 protein, human
EC 2.7.11.22
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26239Subventions
Organisme : Science and Technology Program of Guangzhou, China.
ID : 202201020292
Informations de copyright
© 2024. The Author(s).
Références
Da Broi, M. G. et al. Influence of follicular fluid and cumulus cells on oocyte quality: Clinical implications. J. Assist. Reprod. Genet. 35, 735–751. https://doi.org/10.1007/s10815-018-1143-3 (2018).
doi: 10.1007/s10815-018-1143-3
pubmed: 29497954
pmcid: 5984887
Albertini, D. F. A cell for every season: The ovarian granulosa cell. J. Assist. Reprod. Genet. 28, 877–878. https://doi.org/10.1007/s10815-011-9648-z (2011).
doi: 10.1007/s10815-011-9648-z
pubmed: 22020532
pmcid: 3220433
Albertini, D. F., Combelles, C. M., Benecchi, E. & Carabatsos, M. J. Cellular basis for paracrine regulation of ovarian follicle development. Reproduction 121, 647–653. https://doi.org/10.1530/rep.0.1210647 (2001).
doi: 10.1530/rep.0.1210647
pubmed: 11427152
Da Silva-Buttkus, P. et al. Effect of cell shape and packing density on granulosa cell proliferation and formation of multiple layers during early follicle development in the ovary. J. Cell Sci. 121, 3890–3900. https://doi.org/10.1242/jcs.036400 (2008).
doi: 10.1242/jcs.036400
pubmed: 19001500
Turathum, B., Gao, E. M. & Chian, R. C. The function of cumulus cells in oocyte growth and maturation and in subsequent ovulation and fertilization. Cells 10. https://doi.org/10.3390/cells10092292 (2021).
Richani, D., Dunning, K. R., Thompson, J. G. & Gilchrist, R. B. Metabolic co-dependence of the oocyte and cumulus cells: Essential role in determining oocyte developmental competence. Hum. Reprod. Update 27, 27–47. https://doi.org/10.1093/humupd/dmaa043 (2021).
doi: 10.1093/humupd/dmaa043
pubmed: 33020823
Zhang, M. et al. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11, 1913–1935 (2021).
pubmed: 34094661
pmcid: 8167670
Grison, A., Atanasoski, S. & Cyclins Cyclin-dependent kinases, and cyclin-dependent kinase inhibitors in the mouse nervous system. Mol. Neurobiol. 57, 3206–3218. https://doi.org/10.1007/s12035-020-01958-7 (2020).
doi: 10.1007/s12035-020-01958-7
pubmed: 32506380
Soner, B. C. et al. Induced growth inhibition, cell cycle arrest and apoptosis in CD133+/CD44+ prostate cancer stem cells by flavopiridol. Int. J. Mol. Med. 34, 1249–1256. https://doi.org/10.3892/ijmm.2014.1930 (2014).
doi: 10.3892/ijmm.2014.1930
pubmed: 25216351
pmcid: 4199402
Venkataraman, G. et al. Induction of apoptosis and down regulation of cell cycle proteins in mantle cell lymphoma by flavopiridol treatment. Leuk. Res. 30, 1377–1384. https://doi.org/10.1016/j.leukres.2006.03.004 (2006).
doi: 10.1016/j.leukres.2006.03.004
pubmed: 16624404
Hofmeister, C. C. et al. A phase I trial of flavopiridol in relapsed multiple myeloma. Cancer Chemother. Pharmacol. 73, 249–257. https://doi.org/10.1007/s00280-013-2347-y (2014).
doi: 10.1007/s00280-013-2347-y
pubmed: 24241210
Dispenzieri, A. et al. Flavopiridol in patients with relapsed or refractory multiple myeloma: A phase 2 trial with clinical and pharmacodynamic end-points. Haematologica 91, 390–393 (2006).
pubmed: 16503551
Jin, S. et al. GADD45-induced cell cycle G2-M arrest associates with altered subcellular distribution of cyclin B1 and is independent of p38 kinase activity. Oncogene 21, 8696–8704. https://doi.org/10.1038/sj.onc.1206034 (2002).
doi: 10.1038/sj.onc.1206034
pubmed: 12483522
Vairapandi, M., Balliet, A. G., Hoffman, B. & Liebermann, D. A. GADD45b and GADD45g are cdc2/cyclinB1 kinase inhibitors with a role in S and G2/M cell cycle checkpoints induced by genotoxic stress. J. Cell. Physiol. 192, 327–338. https://doi.org/10.1002/jcp.10140 (2002).
doi: 10.1002/jcp.10140
pubmed: 12124778
Chang, L. et al. PI3K/Akt/mTOR pathway inhibitors enhance radiosensitivity in radioresistant prostate cancer cells through inducing apoptosis, reducing autophagy, suppressing NHEJ and HR repair pathways. Cell. Death Dis. 5, e1437. https://doi.org/10.1038/cddis.2014.415 (2014).
doi: 10.1038/cddis.2014.415
pubmed: 25275598
pmcid: 4237243
Pinto, N. et al. Flavopiridol causes cell cycle inhibition and demonstrates anti-cancer activity in anaplastic thyroid cancer models. PLoS One 15, e0239315. https://doi.org/10.1371/journal.pone.0239315 (2020).
doi: 10.1371/journal.pone.0239315
pubmed: 32970704
pmcid: 7514001
Arguello, F. et al. Flavopiridol induces apoptosis of normal lymphoid cells, causes immunosuppression, and has potent antitumor activity in vivo against human leukemia and lymphoma xenografts. Blood 91, 2482–2490 (1998).
pubmed: 9516149
Wiernik, P. H. Alvocidib (flavopiridol) for the treatment of chronic lymphocytic leukemia. Expert Opin. Investig. Drugs 25, 729–734. https://doi.org/10.1517/13543784.2016.1169273 (2016).
doi: 10.1517/13543784.2016.1169273
pubmed: 26998706
Bose, P., Vachhani, P. & Cortes, J. E. Treatment of relapsed/refractory acute myeloid leukemia. Curr. Treat. Options Oncol. 18. https://doi.org/10.1007/s11864-017-0456-2 (2017).
Srikumar, T. & Padmanabhan, J. Potential use of flavopiridol in treatment of chronic diseases. Adv. Exp. Med. Biol. 929, 209–228. https://doi.org/10.1007/978-3-319-41342-6_9 (2016).
doi: 10.1007/978-3-319-41342-6_9
pubmed: 27771926
Parker, B. W. et al. Early induction of apoptosis in hematopoietic cell lines after exposure to flavopiridol. Blood 91, 458–465 (1998).
doi: 10.1182/blood.V91.2.458
pubmed: 9427698
Boffo, S., Damato, A., Alfano, L. & Giordano, A. CDK9 inhibitors in acute myeloid leukemia. J. Exp. Clin. Cancer Res. 37. https://doi.org/10.1186/s13046-018-0704-8 (2018).
Bose, P. & Grant, S. Mcl-1 as a therapeutic target in acute myelogenous leukemia (AML). Leuk. Res. Rep. 2, 12–14. https://doi.org/10.1016/j.lrr.2012.11.006 (2013).
doi: 10.1016/j.lrr.2012.11.006
pubmed: 23977453
pmcid: 3747011
Kari, C., Chan, T. O., Rocha de Quadros, M. & Rodeck, U. Targeting the epidermal growth factor receptor in cancer: Apoptosis takes center stage. Cancer Res. 63, 1–5 (2003).
pubmed: 12517767
Sato, S., Kajiyama, Y., Sugano, M., Iwanuma, Y. & Tsurumaru, M. Flavopiridol as a radio-sensitizer for esophageal cancer cell lines. Dis. Esophagus 17, 338–344. https://doi.org/10.1111/j.1442-2050.2004.00437.x (2004).
doi: 10.1111/j.1442-2050.2004.00437.x
pubmed: 15569374
Aklima, J. et al. Effects of matrix pH on spontaneous transient depolarization and reactive oxygen species production in mitochondria. Front. Cell. Dev. Biol. 9, 692776. https://doi.org/10.3389/fcell.2021.692776 (2021).
doi: 10.3389/fcell.2021.692776
pubmed: 34277637
pmcid: 8278022
Bhattacharyya, A., Chattopadhyay, R., Mitra, S. & Crowe, S. E. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94, 329–354. https://doi.org/10.1152/physrev.00040.2012 (2014).
doi: 10.1152/physrev.00040.2012
pubmed: 24692350
pmcid: 4044300
Yang, F. et al. Melatonin alleviates beta-zearalenol and HT-2 toxin-induced apoptosis and oxidative stress in bovine ovarian granulosa cells. Environ. Toxicol. Pharmacol. 68, 52–60. https://doi.org/10.1016/j.etap.2019.03.005 (2019).
doi: 10.1016/j.etap.2019.03.005
pubmed: 30870695
Hardy, M. L. M., Day, M. L. & Morris, M. B. Redox regulation and oxidative stress in mammalian oocytes and embryos developed in vivo and in vitro. Int. J. Environ. Res. Public Health 18. https://doi.org/10.3390/ijerph182111374 (2021).
Saller, S. et al. Norepinephrine, active norepinephrine transporter, and norepinephrine-metabolism are involved in the generation of reactive oxygen species in human ovarian granulosa cells. Endocrinology 153, 1472–1483. https://doi.org/10.1210/en.2011-1769 (2012).
doi: 10.1210/en.2011-1769
pubmed: 22234472
Nickel, A., Kohlhaas, M. & Maack, C. Mitochondrial reactive oxygen species production and elimination. J. Mol. Cell. Cardiol. 73, 26–33. https://doi.org/10.1016/j.yjmcc.2014.03.011 (2014).
doi: 10.1016/j.yjmcc.2014.03.011
pubmed: 24657720
Kroemer, G., Dallaporta, B. & Resche-Rigon, M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu. Rev. Physiol. 60, 619–642. https://doi.org/10.1146/annurev.physiol.60.1.619 (1998).
doi: 10.1146/annurev.physiol.60.1.619
pubmed: 9558479
Limon-Pacheco, J. & Gonsebatt, M. E. The role of antioxidants and antioxidant-related enzymes in protective responses to environmentally induced oxidative stress. Mutat. Res. 674, 137–147. https://doi.org/10.1016/j.mrgentox.2008.09.015 (2009).
doi: 10.1016/j.mrgentox.2008.09.015
pubmed: 18955158
Bock, F. J. & Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell. Biol. 21, 85–100. https://doi.org/10.1038/s41580-019-0173-8 (2020).
doi: 10.1038/s41580-019-0173-8
pubmed: 31636403
Lubos, E., Loscalzo, J. & Handy, D. E. Glutathione peroxidase-1 in health and disease: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal. 15, 1957–1997. https://doi.org/10.1089/ars.2010.3586 (2011).
doi: 10.1089/ars.2010.3586
pubmed: 21087145
pmcid: 3159114
Lee, J. & Song, C. H. Effect of reactive oxygen species on the endoplasmic reticulum and mitochondria during intracellular pathogen infection of mammalian cells. Antioxidants (Basel) 10. https://doi.org/10.3390/antiox10060872 (2021).
Vaccaro, A. et al. Sleep loss can cause death through accumulation of reactive oxygen species in the gut. Cell 181, 1307–1328. https://doi.org/10.1016/j.cell.2020.04.049 (2020).
Ciccia, A. & Elledge, S. J. The DNA damage response: Making it safe to play with knives. Mol. Cell. 40, 179–204. https://doi.org/10.1016/j.molcel.2010.09.019 (2010).
doi: 10.1016/j.molcel.2010.09.019
pubmed: 20965415
pmcid: 2988877
Gonfloni, S. DNA damage stress response in germ cells: Role of c-Abl and clinical implications. Oncogene 29, 6193–6202. https://doi.org/10.1038/onc.2010.410 (2010).
doi: 10.1038/onc.2010.410
pubmed: 20818431
Sherr, C. J. Cancer cell cycles. Science 274, 1672–1677. https://doi.org/10.1126/science.274.5293.1672 (1996).
doi: 10.1126/science.274.5293.1672
pubmed: 8939849
Malumbres, M. Cyclin-dependent kinases. Genome Biol. 15, 122. https://doi.org/10.1186/gb4184 (2014).
doi: 10.1186/gb4184
pubmed: 25180339
pmcid: 4097832
Malumbres, M. & Barbacid, M. To cycle or not to cycle: A critical decision in cancer. Nat. Rev. Cancer 1, 222–231. https://doi.org/10.1038/35106065 (2001).
doi: 10.1038/35106065
pubmed: 11902577
Zheng, Z. L. Cyclin-dependent kinases and CTD phosphatases in cell cycle transcriptional control: Conservation across eukaryotic kingdoms and uniqueness to plants. Cells 11. https://doi.org/10.3390/cells11020279 (2022).
S, M. M. Cyclin-dependent kinases as potential targets for colorectal cancer: Past, present and future. Future Med. Chem. 14, 1087–1105. https://doi.org/10.4155/fmc-2022-0064 (2022).
doi: 10.4155/fmc-2022-0064
Malumbres, M. & Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev. 17, 60–65. https://doi.org/10.1016/j.gde.2006.12.008 (2007).
doi: 10.1016/j.gde.2006.12.008
pubmed: 17208431
Salaun, P., Rannou, Y. & Prigent, C. Cdk1, Plks, auroras, and neks: The mitotic bodyguards. Adv. Exp. Med. Biol. 617, 41–56. https://doi.org/10.1007/978-0-387-69080-3_4 (2008).
doi: 10.1007/978-0-387-69080-3_4
pubmed: 18497029
pmcid: 2533106
Schafer, K. A. The cell cycle: A review. Vet. Pathol. 35, 461–478. https://doi.org/10.1177/030098589803500601 (1998).
doi: 10.1177/030098589803500601
pubmed: 9823588
Chen, R., Keating, M. J., Gandhi, V. & Plunkett, W. Transcription inhibition by flavopiridol: Mechanism of chronic lymphocytic leukemia cell death. Blood 106, 2513–2519. https://doi.org/10.1182/blood-2005-04-1678 (2005).
doi: 10.1182/blood-2005-04-1678
pubmed: 15972445
pmcid: 1895272
Blagosklonny, M. V., Darzynkiewicz, Z. & Figg, W. D. Flavopiridol inversely affects p21(WAF1/CIP1) and p53 and protects p21-sensitive cells from paclitaxel. Cancer Biol. Ther. 1, 420–425. https://doi.org/10.4161/cbt.1.4.21 (2002).
doi: 10.4161/cbt.1.4.21
pubmed: 12432259
Jiang, J. et al. Flavopiridol-induced apoptosis during S phase requires E2F-1 and inhibition of cyclin A-dependent kinase activity. Cancer Res. 63, 7410–7422 (2003).
pubmed: 14612540
Liu, K. et al. The role of CDC25C in cell cycle regulation and clinical cancer therapy: A systematic review. Cancer Cell. Int. 20, 213. https://doi.org/10.1186/s12935-020-01304-w (2020).
doi: 10.1186/s12935-020-01304-w
pubmed: 32518522
pmcid: 7268735
Chang, H. M., Cheng, J. C., Klausen, C. & Leung, P. C. Recombinant BMP4 and BMP7 increase activin A production by up-regulating inhibin betaA subunit and furin expression in human granulosa-lutein cells. J. Clin. Endocrinol. Metab. 100, E375–386. https://doi.org/10.1210/jc.2014-3026 (2015).
doi: 10.1210/jc.2014-3026
pubmed: 25562508
Chang, H. M. et al. Activin A-induced increase in LOX activity in human granulosa-lutein cells is mediated by CTGF. Reproduction 152, 293–301. https://doi.org/10.1530/REP-16-0254 (2016).
doi: 10.1530/REP-16-0254
pubmed: 27530347
Senderowicz, A. M. et al. Phase I trial of continuous infusion flavopiridol, a novel cyclin-dependent kinase inhibitor, in patients with refractory neoplasms. J. Clin. Oncol. 16, 2986–2999. https://doi.org/10.1200/JCO.1998.16.9.2986 (1998).
doi: 10.1200/JCO.1998.16.9.2986
pubmed: 9738567
Motwani, M., Delohery, T. M. & Schwartz, G. K. Sequential dependent enhancement of caspase activation and apoptosis by flavopiridol on paclitaxel-treated human gastric and breast cancer cells. Clin. Cancer Res. 5, 1876–1883 (1999).
pubmed: 10430095
He, G. F. et al. The role of L-type calcium channels in mouse oocyte maturation, activation and early embryonic development. Theriogenology 102, 67–74. https://doi.org/10.1016/j.theriogenology.2017.07.012 (2017).
doi: 10.1016/j.theriogenology.2017.07.012
pubmed: 28750296
Liu, R. et al. Human amniotic mesenchymal stem cells improve the follicular microenvironment to recover ovarian function in premature ovarian failure mice. Stem Cell. Res. Ther. 10, 299. https://doi.org/10.1186/s13287-019-1315-9 (2019).
doi: 10.1186/s13287-019-1315-9
pubmed: 31578152
pmcid: 6775662