Dose response of leisure time physical activity and biological aging in type 2 diabetes: a cross sectional study.
Biological aging
Leisure-time physical activity
Phenotypic age acceleration
Public health strategies
Type 2 diabetes
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
08
08
2024
accepted:
22
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
To investigate the relationship between Leisure time physical activity (LTPA) patterns and PhenoAgeAccel in patients with Type 2 diabetes (T2D), emphasizing the role of regular LTPA in mitigating biological aging. This study utilized data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2018, including 4,134 adults with T2D. Multivariable linear regression models and restricted cubic spline (RCS) methods were employed to assess the relationship between LTPA and Phenotypic age acceleration (PhenoAgeAccel), with segmented likelihood ratio tests to detect nonlinear thresholds. Stratified regression and interaction tests were conducted for robust analysis. Compared to individuals with no LTPA patterns, those with regular LTPA patterns had significantly lower PhenoAgeAccel scores (β = -1.164, 95% CI: -1.651 to -0.677, P < 0.0001), while the "Weekend Warrior" and "Inactive-LTPA" patterns showed no significant effects. A nonlinear threshold effect was identified; below 594.57 min of weekly LTPA, there was a significant negative correlation (β = -0.002, 95% CI: -0.003 to -0.001, P = 0.000), with gender-specific effects present. Regular LTPA significantly reduces phenotypic age acceleration in T2D patients, with a nonlinear threshold effect indicating that moderate physical activity is most beneficial. These findings highlight the necessity of personalized physical activity recommendations and provide evidence for public health strategies to promote healthy aging in T2D patients.
Identifiants
pubmed: 39482385
doi: 10.1038/s41598-024-77359-w
pii: 10.1038/s41598-024-77359-w
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
26253Informations de copyright
© 2024. The Author(s).
Références
Aguayo-Mazzucato, C. et al. Acceleration of β cell aging determines diabetes and Senolysis improves Disease outcomes. Cell Metabol. 30, 129–142e4 (2019).
doi: 10.1016/j.cmet.2019.05.006
Gunasekaran, U. & Gannon, M. Type 2 diabetes and the aging pancreatic Beta cell. Aging. 3, 565–575 (2011).
doi: 10.18632/aging.100350
pubmed: 21765202
pmcid: 3164365
Leenders, M. et al. Patients with type 2 diabetes show a Greater decline in muscle Mass, muscle strength, and functional capacity with aging. J. Am. Med. Dir. Assoc. 14, 585–592 (2013).
doi: 10.1016/j.jamda.2013.02.006
pubmed: 23537893
Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell. 148, 46–57 (2012).
doi: 10.1016/j.cell.2012.01.003
pubmed: 22265401
pmcid: 3336960
Wu, D. et al. Better Life’s essential 8 contributes to slowing the biological aging process: a cross-sectional study based on NHANES 2007–2010 data. Front. Public. Health. 12, 1295477 (2024).
doi: 10.3389/fpubh.2024.1295477
pubmed: 38544722
pmcid: 10965682
Savela, S. et al. Physical activity in midlife and telomere length measured in old age. Exp. Gerontol. 48, 81–84 (2013).
doi: 10.1016/j.exger.2012.02.003
pubmed: 22386580
Semeraro, M. D. et al. Physical activity, a modulator of aging through effects on telomere biology. Aging. 12, 13803–13823 (2020).
doi: 10.18632/aging.103504
pubmed: 32575077
pmcid: 7377891
Polidori, M. C., Mecocci, P., Cherubini, A. & Senin, U. Physical activity and oxidative stress during aging. Int. J. Sports Med. 21, 154–157 (2000).
doi: 10.1055/s-2000-8881
pubmed: 10834344
Ji, L. L. Exercise at Old Age: does it increase or alleviate oxidative stress? Ann. N. Y. Acad. Sci. 928, 236–247 (2001).
doi: 10.1111/j.1749-6632.2001.tb05653.x
pubmed: 11795515
Ubaida-Mohien, C. et al. Physical Activity Associated Proteomics of Skeletal Muscle: Being Physically Active in Daily Life May Protect Skeletal Muscle From Aging. Front Physiol. 10, 312 (2019).
Barha, C. K., Hsu, C.-L., Ten Brinke, L. & Liu-Ambrose, T. Biological Sex: A Potential Moderator of Physical Activity Efficacy on Brain Health. Front Aging Neurosci. 11, 329 (2019).
Wang, L. et al. Trends in Prevalence of diabetes and control of risk factors in diabetes among US adults, 1999–2018. JAMA. 326, 1–13 (2021).
doi: 10.1001/jama.2021.9883
pubmed: 34170288
pmcid: 8715350
Mathew, T. K., Zubair, M. & Tadi, P. Blood Glucose Monitoring. In StatPearls [Internet] (StatPearls Publishing, 2023).
Zhou, H., Li, T., Li, J., Zhuang, X. & Yang, J. The association between visceral adiposity index and risk of type 2 diabetes mellitus. Sci. Rep. 14, 16634 (2024).
doi: 10.1038/s41598-024-67430-x
pubmed: 39025982
pmcid: 11258278
Liao, J. et al. Association of daily sitting time and leisure-time physical activity with body fat among U.S. adults. J. Sport Health Sci. 13, 195–203 (2024).
doi: 10.1016/j.jshs.2022.10.001
pubmed: 36240998
Wu, D. et al. Dose-response relationship between leisure-time physical activity patterns and phenotypic age acceleration in American adults: a cross-sectional analysis. J. Exerc. Sci. Fit. 22, 445–455 (2024).
doi: 10.1016/j.jesf.2024.09.005
Wang, K., Xia, F., Li, Q., Luo, X. & Wu, J. The associations of Weekend Warrior activity patterns with the visceral Adiposity Index in US adults: repeated cross-sectional study. JMIR Public. Health Surveill. 9, e41973 (2023).
doi: 10.2196/41973
pubmed: 36630179
pmcid: 9878365
Shiroma, E. J., Lee, I. M., Schepps, M. A., Kamada, M. & Harris, T. B. Physical activity patterns and mortality: the Weekend Warrior and Activity bouts. Med. Sci. Sports Exerc. 51, 35–40 (2019).
doi: 10.1249/MSS.0000000000001762
pubmed: 30138219
pmcid: 6295264
Li, G. et al. Association between physical activity and depression in adult prescription opioid users: a cross-sectional analysis based on NHANES 2007–2018. Gen. Hosp. Psychiatry. 89, 1–7 (2024).
doi: 10.1016/j.genhosppsych.2024.03.005
pubmed: 38579547
Liang, J. H. et al. Whether weekend warrior activity and other leisure-time physical activity pattern reduce the risk of depression symptom in the representative adults? A population-based analysis of NHANES 2007–2020. J. Affect. Disord. 340, 329–339 (2023).
doi: 10.1016/j.jad.2023.07.113
pubmed: 37543116
He, H., Chen, X., Ding, Y., Chen, X. & He, X. Composite dietary antioxidant index associated with delayed biological aging: a population-based study. Aging (Albany NY). 16, 15–27 (2024).
pubmed: 38170244
Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 10, 573–591 (2018).
doi: 10.18632/aging.101414
pubmed: 29676998
Sun, X. et al. Associations of epigenetic age acceleration with CVD risks across the Lifespan: the Bogalusa Heart Study. JACC Basic. Transl Sci. 9, 577–590 (2024).
doi: 10.1016/j.jacbts.2024.01.018
pubmed: 38984046
pmcid: 11228118
Sun, L., Huo, X., Jia, S., Sun, J. & Wang, C. PhenoAgeAccel mediates the association between circadian syndrome and all-cause mortality, as evidenced by NHANES. J. Nutr. Health Aging. 28, 100269 (2024).
doi: 10.1016/j.jnha.2024.100269
pubmed: 38810514
Liu, Z. et al. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med. 15, e1002718 (2018).
Liu, W. et al. Oxidative Stress Factors Mediate the Association between Life’s essential 8 and accelerated phenotypic aging: NHANES 2005–2018. J. Gerontol. Biol. Sci. Med. Sci. 79, glad240 (2024).
doi: 10.1093/gerona/glad240
Thomas, A., Belsky, D. W. & Gu, Y. Healthy Lifestyle Behaviors and Biological Aging in the U.S. National Health and Nutrition examination surveys 1999–2018. J. Gerontol. Biol. Sci. Med. Sci. 78, 1535–1542 (2023).
doi: 10.1093/gerona/glad082
Reedy, J. et al. Healthy eating Index Protocol: review, update, and development process to reflect Dietary Guidance across the Lifespan. Curr. Dev. Nutr. 5, 447 (2021).
doi: 10.1093/cdn/nzab038_059
pmcid: 8181858
Davis, T. A. 68 Nutritional Importance of Animal-Sourced foods in a healthy Diet. J. Anim. Sci. 100, 30–31 (2022).
doi: 10.1093/jas/skac247.058
pmcid: 9493612
Arem, H. et al. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 175, 959–967 (2015).
doi: 10.1001/jamainternmed.2015.0533
pubmed: 25844730
pmcid: 4451435
Bassuk, S. S. & Manson, J. E. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. J. Appl. Physiol. 99, 1193–1204 (2005).
doi: 10.1152/japplphysiol.00160.2005
pubmed: 16103522
Sailani, M. R. et al. Lifelong physical activity is associated with promoter hypomethylation of genes involved in metabolism, myogenesis, contractile properties and oxidative stress resistance in aged human skeletal muscle. Sci. Rep. 9, 3272 (2019).
doi: 10.1038/s41598-018-37895-8
pubmed: 30824849
pmcid: 6397284
Santos, J. M., dos, Moreli, M. L., Tewari, S. & Benite-Ribeiro, S. A. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: an epigenetic perspective. Metabolism - Clin. Experimental. 64, 1619–1628 (2015).
doi: 10.1016/j.metabol.2015.09.013
Teixeira-Lemos, E., Nunes, S., Teixeira, F. & Reis, F. Regular physical exercise training assists in preventing type 2 diabetes development: focus on its antioxidant and anti-inflammatory properties. Cardiovasc. Diabetol. 10, 12 (2011).
doi: 10.1186/1475-2840-10-12
pubmed: 21276212
pmcid: 3041659