LINC01320 facilitates cell proliferation and migration of ovarian cancer via regulating PURB/DDB2/NEDD4L/TGF-β axis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 27 07 2024
accepted: 29 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Ovarian cancer (OC) is one of the most prevalent and lethal malignancies affecting the female reproductive system, due to its tendency for metastasis and recurrence. This study identified the overexpression of LINC01320 (or long intergenic nonprotein coding RNA 1320) in tissues of ovarian cancer through the analysis of patient samples and online datasets. In vitro and in vivo experiments demonstrate that silencing of LINC01320 expression led to inhibition of proliferation and metastasis of OC cells. RNA pull-down followed by liquid chromatography tandem mass spectrometry (RNA pull-down-LC-MS/MS) revealed that LINC01320 interacted with purine-rich element binding protein B (PURB), a transcriptional repressor. Furthermore, the RNA-seq analysis identified damage-specific DNA binding protein 2 (DDB2) as a major common target of LINC01320 and PURB. Mechanistically, LINC01320 could recruit PURB to the promoter region of DDB2 to repress DDB2 transcription; thus, promoting the expression of NEDD4L and impeding the TGF-β/SMAD signaling pathway, and ultimately facilitating the progression of OC. Finally, rescue experiments confirmed the involvement of the DDB2/NEDD4L/TGF-β axis in LINC01320-mediated OC progression. In conclusion, this study unveils for the first time the pivotal function of the LINC01320/PURB/DDB2/NEDD4L/TGF-β axis and explores its prospective clinical implications in OC.

Identifiants

pubmed: 39482389
doi: 10.1038/s41598-024-78255-z
pii: 10.1038/s41598-024-78255-z
doi:

Substances chimiques

RNA, Long Noncoding 0
Transforming Growth Factor beta 0
DNA-Binding Proteins 0
Nedd4 Ubiquitin Protein Ligases EC 2.3.2.26

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26233

Subventions

Organisme : Suzhou Gu Su Health Talent Research Project
ID : GSWS2023056

Informations de copyright

© 2024. The Author(s).

Références

Lheureux, S., Gourley, C., Vergote, I. & Oza, A. M. Epithelial ovarian cancer. Lancet (London England) 393, 1240–1253. https://doi.org/10.1016/s0140-6736(18)32552-2 (2019).
doi: 10.1016/s0140-6736(18)32552-2 pubmed: 30910306
Eisenhauer, E. A. Real-world evidence in the treatment of ovarian cancer. Ann. Oncol. Official J. Eur. Soc. Med. Oncol. 28, viii61–viii65. https://doi.org/10.1093/annonc/mdx443 (2017).
doi: 10.1093/annonc/mdx443
Wu, Y. B. et al. Long non-coding RNA NRSN2-AS1 promotes ovarian cancer progression through targeting PTK2/β-catenin pathway. Cell Death Dis. 14 https://doi.org/10.1038/s41419-023-06214-z (2023).
Mercer, T. R., Dinger, M. E. & Mattick, J. S. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10, 155–159. https://doi.org/10.1038/nrg2521 (2009).
doi: 10.1038/nrg2521 pubmed: 19188922
Chandra Gupta, S. & Nandan Tripathi, Y. Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int. J. Cancer 140, 1955–1967. https://doi.org/10.1002/ijc.30546 (2017).
doi: 10.1002/ijc.30546 pubmed: 27925173
Schwarzmueller, L., Bril, O., Vermeulen, L. & Léveillé, N. Emerging role and therapeutic potential of lncRNAs in Colorectal Cancer. Cancers 12 https://doi.org/10.3390/cancers12123843 (2020).
Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in Cancer pathways. Cancer cell. 29, 452–463. https://doi.org/10.1016/j.ccell.2016.03.010 (2016).
doi: 10.1016/j.ccell.2016.03.010 pubmed: 27070700 pmcid: 4831138
Li, J. et al. Long noncoding RNA-JPX predicts the poor prognosis of ovarian cancer patients and promotes tumor cell proliferation, invasion and migration by the PI3K/Akt/mTOR signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 22, 8135–8144. https://doi.org/10.26355/eurrev_201812_16505 (2018).
doi: 10.26355/eurrev_201812_16505 pubmed: 30556851
Lin, X., Feng, D., Li, P. & Lv, Y. LncRNA LINC00857 regulates the progression and glycolysis in ovarian cancer by modulating the Hippo signaling pathway. Cancer Med. 9, 8122–8132. https://doi.org/10.1002/cam4.3322 (2020).
doi: 10.1002/cam4.3322 pubmed: 32918541 pmcid: 7643679
Liang, H. et al. LncRNA PTAR promotes EMT and invasion-metastasis in serous ovarian cancer by competitively binding mir-101-3p to regulate ZEB1 expression. Mol. Cancer 17 https://doi.org/10.1186/s12943-018-0870-5 (2018).
Wang, C. et al. LncRNA SPOCD1-AS from ovarian cancer extracellular vesicles remodels mesothelial cells to promote peritoneal metastasis via interacting with G3BP1. J. Exp. Clin. cancer Res. CR 40, 101. https://doi.org/10.1186/s13046-021-01899-6 (2021).
doi: 10.1186/s13046-021-01899-6 pmcid: 7968157
Wu, W., Guo, L., Liang, Z., Liu, Y. & Yao, Z. Lnc-SNHG16/miR-128 axis modulates malignant phenotype through WNT/beta-catenin pathway in cervical cancer cells. J. Cancer 11, 2201–2212. https://doi.org/10.7150/jca.40319 (2020).
doi: 10.7150/jca.40319 pubmed: 32127947 pmcid: 7052928
Sun, Z., Gao, S., Xuan, L. & Liu, X. Long non-coding RNA FEZF1-AS1 induced progression of ovarian cancer via regulating miR-130a-5p/SOX4 axis. J. Cell. Mol. Med. 24, 4275–4285. https://doi.org/10.1111/jcmm.15088 (2020).
doi: 10.1111/jcmm.15088 pubmed: 32135030 pmcid: 7171310
Suhorutshenko, M. et al. Endometrial receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity. Hum. Reprod. (Oxford England) 33, 2074–2086. https://doi.org/10.1093/humrep/dey301 (2018).
doi: 10.1093/humrep/dey301
Sun, C., Jiang, H., Sun, Z., Gui, Y. & Xia, H. Identification of long non-coding RNAs biomarkers for early diagnosis of myocardial infarction from the dysregulated coding-non-coding co-expression network. Oncotarget 7, 73541–73551. https://doi.org/10.18632/oncotarget.11999 (2016).
doi: 10.18632/oncotarget.11999 pubmed: 27634901 pmcid: 5341997
Meng, H., Guo, K. & Zhang, Y. Effects of lncRNA LINC01320 on Proliferation and Migration of Pancreatic Cancer cells through targeted regulation of miR-324-3p. J. Healthc. Eng. 2021 (4125432). https://doi.org/10.1155/2021/4125432 (2021).
Hu, N. & Ji, H. N6-methyladenosine (m6A)-mediated up-regulation of long noncoding RNA LINC01320 promotes the proliferation, migration, and invasion of gastric cancer via miR495-5p/RAB19 axis. Bioengineered 12, 4081–4091. https://doi.org/10.1080/21655979.2021.1953210 (2021).
doi: 10.1080/21655979.2021.1953210 pubmed: 34288797 pmcid: 8806595
Zhao, R. et al. DDB2 modulates TGF-β signal transduction in human ovarian cancer cells by downregulating NEDD4L. Nucleic Acids Res. 43 7838–7849. https://doi.org/10.1093/nar/gkv667 (2015).
doi: 10.1093/nar/gkv667 pubmed: 26130719 pmcid: 4652750
Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat. Biotechnol. 38, 675–678. https://doi.org/10.1038/s41587-020-0546-8 (2020).
doi: 10.1038/s41587-020-0546-8 pubmed: 32444850 pmcid: 7386072
Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773. https://doi.org/10.1093/nar/gky955 (2019).
doi: 10.1093/nar/gky955 pubmed: 30357393
Liu, J. Y. et al. BMI-1 promotes breast cancer proliferation and metastasis through different mechanisms in different subtypes. Cancer Sci. 114, 449–462. https://doi.org/10.1111/cas.15623 (2023).
doi: 10.1111/cas.15623 pubmed: 36285479
Yu, X. et al. E3 ubiquitin ligase RNF187 promotes growth of spermatogonia via lysine 48-linked polyubiquitination-mediated degradation of KRT36/KRT84. FASEB J. Official Publ. Feder. Am. Soc. Exp. Biol. 37, e23217. https://doi.org/10.1096/fj.202301120R (2023).
doi: 10.1096/fj.202301120R
Xu, B. Y. et al. RNF187 governs the maintenance of mouse GC-2 cell development by facilitating histone H3 ubiquitination at K57/80. Asian J. Androl. https://doi.org/10.4103/aja202368 (2023).
doi: 10.4103/aja202368 pubmed: 38157428 pmcid: 10919422
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45. https://doi.org/10.1093/nar/29.9.e45 (2001).
Wang, Q. et al. BMI1 promotes osteosarcoma proliferation and metastasis by repressing the transcription of SIK1. Cancer Cell Int. 22 https://doi.org/10.1186/s12935-022-02552-8 (2022).
Yu, J. et al. Srlp is crucial for the self-renewal and differentiation of germline stem cells via RpL6 signals in Drosophila testes. Cell Death Dis. 10, 294. https://doi.org/10.1038/s41419-019-1527-z (2019).
doi: 10.1038/s41419-019-1527-z pubmed: 30931935 pmcid: 6443671
Zhou, H. et al. The plasminogen receptor directs maintenance of spermatogonial stem cells by targeting BMI1. Mol. Biol. Rep. 49, 4469–4478. https://doi.org/10.1007/s11033-022-07289-1 (2022).
doi: 10.1007/s11033-022-07289-1 pubmed: 35220512
Wu, L., Li, S., Xu, J., Shen, C. & Qian, Q. AGAP2-AS1/BRD7/c-Myc signaling axis promotes skin cutaneous melanoma progression. Am. J. Transl. Res. 15, 350–362 (2023).
pubmed: 36777828 pmcid: 9908487
Liu, Y. et al. INTS7-ABCD3 Interaction stimulates the proliferation and osteoblastic differentiation of mouse bone marrow mesenchymal stem cells by suppressing oxidative stress. Front. Physiol. 12, 758607. https://doi.org/10.3389/fphys.2021.758607 (2021).
doi: 10.3389/fphys.2021.758607 pubmed: 34880777 pmcid: 8647813
Zhang, K. et al. BMI1 promotes spermatogonia proliferation through epigenetic repression of Ptprm. Biochem. Biophys. Res. Commun. 583, 169–177. https://doi.org/10.1016/j.bbrc.2021.10.074 (2021).
doi: 10.1016/j.bbrc.2021.10.074 pubmed: 34739857
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 11, R14. https://doi.org/10.1186/gb-2010-11-2-r14 (2010).
doi: 10.1186/gb-2010-11-2-r14 pubmed: 20132535 pmcid: 2872874
Yu, J. et al. BMI1 drives steroidogenesis through Epigenetically repressing the p38 MAPK pathway. Front. cell. Dev. Biol. 9, 665089. https://doi.org/10.3389/fcell.2021.665089 (2021).
doi: 10.3389/fcell.2021.665089
Chang, K. C. et al. MaTAR25 lncRNA regulates the Tensin1 gene to impact breast cancer progression. Nat. Commun. 11, 6438. https://doi.org/10.1038/s41467-020-20207-y (2020).
doi: 10.1038/s41467-020-20207-y pubmed: 33353933 pmcid: 7755919
Pan, J. et al. Luteolin inhibits viability, migration, angiogenesis and invasion of non-small cell lung cancer vascular endothelial cells via miR-133a-3p/purine rich element binding protein B-mediated MAPK and PI3K/Akt signaling pathways. Tissue cell. 75, 101740. https://doi.org/10.1016/j.tice.2022.101740 (2022).
doi: 10.1016/j.tice.2022.101740 pubmed: 35101688
Maamar, H., Cabili, M. N., Rinn, J. & Raj, A. linc-HOXA1 is a noncoding RNA that represses Hoxa1 transcription in cis. Genes Dev. 27, 1260–1271. https://doi.org/10.1101/gad.217018.113 (2013).
doi: 10.1101/gad.217018.113 pubmed: 23723417 pmcid: 3690399
Pandey, P. R. et al. circSamd4 represses myogenic transcriptional activity of PUR proteins. Nucleic Acids Res. 48, 3789–3805. https://doi.org/10.1093/nar/gkaa035 (2020).
doi: 10.1093/nar/gkaa035 pubmed: 31980816 pmcid: 7144931
Wang, J. et al. The novel long noncoding RNA Lnc19959.2 modulates triglyceride metabolism-associated genes through the interaction with Purb and hnRNPA2B1. Mol. Metab. 37, 100996. https://doi.org/10.1016/j.molmet.2020.100996 (2020).
doi: 10.1016/j.molmet.2020.100996
Han, C. et al. DDB2 suppresses tumorigenicity by limiting the cancer stem cell population in ovarian cancer. Mol. cancer Res. MCR. 12, 784–794. https://doi.org/10.1158/1541-7786.Mcr-13-0638 (2014).
doi: 10.1158/1541-7786.Mcr-13-0638 pubmed: 24574518
Ramsey, J. E. & Kelm, R. J. Mechanism of strand-specific smooth muscle alpha-actin enhancer interaction by purine-rich element binding protein B (purbeta). Biochemistry 48, 6348–6360. https://doi.org/10.1021/bi900708j (2009).
doi: 10.1021/bi900708j pubmed: 19496623
Gao, S. et al. Ubiquitin ligase Nedd4L targets activated Smad2/3 to limit TGF-beta signaling. Mol. Cell 36, 457–468. https://doi.org/10.1016/j.molcel.2009.09.043 (2009).
doi: 10.1016/j.molcel.2009.09.043 pubmed: 19917253 pmcid: 2796330
Balas, M. M. & Johnson, A. M. Exploring the mechanisms behind long noncoding RNAs and cancer. Non-coding RNA Res. 3, 108–117. https://doi.org/10.1016/j.ncrna.2018.03.001 (2018).
doi: 10.1016/j.ncrna.2018.03.001
Daniel, D. C. & Johnson, E. M. PURA, the gene encoding Pur-alpha, member of an ancient nucleic acid-binding protein family with mammalian neurological functions. Gene 643, 133–143. https://doi.org/10.1016/j.gene.2017.12.004 (2018).
doi: 10.1016/j.gene.2017.12.004 pubmed: 29221753
Liu, H. & Johnson, E. M. Distinct proteins encoded by alternative transcripts of the PURG gene, located contrapodal to WRN on chromosome 8, determined by differential termination/polyadenylation. Nucleic Acids Res. 30, 2417–2426. https://doi.org/10.1093/nar/30.11.2417 (2002).
doi: 10.1093/nar/30.11.2417 pubmed: 12034829 pmcid: 117198
Kelm, R. J., Lamba, G. S., Levis, J. E. & Holmes, C. E. Characterization of purine-rich element binding protein B as a novel biomarker in acute myelogenous leukemia prognostication. J. Cell. Biochem. 119, 2073–2083. https://doi.org/10.1002/jcb.26369 (2018).
doi: 10.1002/jcb.26369 pubmed: 28834593
Kelm, R. J., Cogan, J. G., Elder, P. K., Strauch, A. R. & Getz, M. J. Molecular interactions between single-stranded DNA-binding proteins associated with an essential MCAT element in the mouse smooth muscle alpha-actin promoter. J. Biol. Chem. 274, 14238–14245. https://doi.org/10.1074/jbc.274.20.14238 (1999).
doi: 10.1074/jbc.274.20.14238 pubmed: 10318844
Kelm, R. J., Wang, S. X., Polikandriotis, J. A. & Strauch, A. R. Structure/function analysis of mouse purbeta, a single-stranded DNA-binding repressor of vascular smooth muscle alpha-actin gene transcription. J. Biol. Chem. 278, 38749–38757. https://doi.org/10.1074/jbc.M306163200 (2003).
doi: 10.1074/jbc.M306163200 pubmed: 12874279
Johnson, E. M., Daniel, D. C. & Gordon, J. The pur protein family: genetic and structural features in development and disease. J. Cell. Physiol. 228, 930–937. https://doi.org/10.1002/jcp.24237 (2013).
doi: 10.1002/jcp.24237 pubmed: 23018800 pmcid: 3747735
Khalili, K. et al. Puralpha is essential for postnatal brain development and developmentally coupled cellular proliferation as revealed by genetic inactivation in the mouse. Mol. Cell. Biol. 23, 6857–6875. https://doi.org/10.1128/mcb.23.19.6857-6875.2003 (2003).
doi: 10.1128/mcb.23.19.6857-6875.2003 pubmed: 12972605 pmcid: 193944
Mulnix, R. E. et al. hnRNP C1/C2 and pur-beta proteins mediate induction of senescence by oligonucleotides homologous to the telomere overhang. OncoTargets Ther. 7, 23–32. https://doi.org/10.2147/ott.S54575 (2013).
doi: 10.2147/ott.S54575 pubmed: 24379680 pmcid: 3872271
Dualan, R. et al. Chromosomal localization and cDNA cloning of the genes (DDB1 and DDB2) for the p127 and p48 subunits of a human damage-specific DNA binding protein. Genomics 29, 62–69. https://doi.org/10.1006/geno.1995.1215 (1995).
doi: 10.1006/geno.1995.1215 pubmed: 8530102
Tang, J. & Chu, G. Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein. DNA Repair. 1, 601–616. https://doi.org/10.1016/s1568-7864(02)00052-6 (2002).
doi: 10.1016/s1568-7864(02)00052-6 pubmed: 12509284 pmcid: 2894533
Barakat, B. M. et al. Overexpression of DDB2 enhances the sensitivity of human ovarian cancer cells to cisplatin by augmenting cellular apoptosis. Int. J. Cancer 127, 977–988. https://doi.org/10.1002/ijc.25112 (2010).
doi: 10.1002/ijc.25112 pubmed: 20013802 pmcid: 4180185
Roy, N. et al. DDB2 suppresses epithelial-to-mesenchymal transition in colon cancer. Cancer Res. 73, 3771–3782. https://doi.org/10.1158/0008-5472.Can-12-4069 (2013).
doi: 10.1158/0008-5472.Can-12-4069 pubmed: 23610444 pmcid: 3686976
Stoyanova, T. et al. p21 cooperates with DDB2 protein in suppression of ultraviolet ray-induced skin malignancies. J. Biol. Chem. 287, 3019–3028. https://doi.org/10.1074/jbc.M111.295816 (2012).
doi: 10.1074/jbc.M111.295816 pubmed: 22167187
Ennen, M. et al. DDB2: a novel regulator of NF-κB and breast tumor invasion. Cancer Res. 73, 5040–5052. https://doi.org/10.1158/0008-5472.Can-12-3655 (2013).
doi: 10.1158/0008-5472.Can-12-3655 pubmed: 23774208

Auteurs

Gaigai Wang (G)

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China.

Bingya Xu (B)

Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.

Xiangling Yu (X)

Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.

Meng Liu (M)

Department of Gynaecology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China.

Tiantian Wu (T)

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China.

Wenxin Gao (W)

State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.

Haoyue Hu (H)

Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.

Bing Jiang (B)

Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.

Yibo Wu (Y)

Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan University, Wuxi, 214062, China.

Tao Zhou (T)

Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Care Hospital, Wuxi, 214002, China. zhoutao@njmu.edu.cn.

Xia Chen (X)

Department of Obstetrics and Gynecology, Nantong First People's Hospital, Affiliated Hospital 2 of Nantong University, Nantong University, Nantong, 226001, China. chenxia_0511@126.com.

Cong Shen (C)

State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School of Nanjing Medical University, Suzhou, 215002, China. congshen@njmu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH