High expression of LncRNA HOTAIR is a risk factor for temozolomide resistance in glioblastoma via activation of the miR-214/β-catenin/MGMT pathway.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 02 07 2024
accepted: 22 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

HOX transcript antisense RNA (HOTAIR) is upregulated in glioblastoma (GBM) and associated with temozolomide (TMZ) resistance. However, the mechanisms underlying HOTAIR-mediated TMZ resistance remains poorly understood. HOTAIR expression in glioma-related public datasets and drug response estimation were analyzed using bioinformatics. These findings were verified by overexpressing HOTAIR in TMZ-sensitive U251 cells and/or silencing HOTAIR in resistant U251 cells (U251R). The cytotoxic effects were evaluated using cell viability assay and flow cytometry analysis of cell cycle and apoptosis. In this study, we found that HOTAIR was upregulated in TMZ-resistant GBM cell lines and patients with high HOTAIR expression responded poorly to TMZ therapy. HOTAIR knockdown restored TMZ sensitivity in U251R cells, while HOTAIR overexpression conferred TMZ resistance in U251 cells. Wnt/β-catenin signaling was enriched in patients with high HOTAIR expression; consistently, HOTAIR positively regulated β-catenin expression in U251 cells. Moreover, HOTAIR-mediated TMZ resistance was associated with increased MGMT protein level, which resulted from the HOTAIR/miR-214-3p/β-catenin network. Besides, GBM with high HOTAIR expression exhibited sensitivity to methotrexate. Methotrexate enhanced TMZ sensitivity in U251R cells, accompanied by reduced expression of HOTAIR and β-catenin. Thus, we conlcude that HOTAIR is a risk factor for TMZ resistance and methotrexate may represent a potential therapeutic drug for patients with high HOTAIR expression level.

Identifiants

pubmed: 39482401
doi: 10.1038/s41598-024-77348-z
pii: 10.1038/s41598-024-77348-z
doi:

Substances chimiques

Temozolomide YF1K15M17Y
RNA, Long Noncoding 0
HOTAIR long untranslated RNA, human 0
MicroRNAs 0
beta Catenin 0
MGMT protein, human EC 2.1.1.63
DNA Modification Methylases EC 2.1.1.-
Tumor Suppressor Proteins 0
MIRN214 microRNA, human 0
DNA Repair Enzymes EC 6.5.1.-
Antineoplastic Agents, Alkylating 0
CTNNB1 protein, human 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

26224

Subventions

Organisme : Translational Medicine Research Fund of the Zhongnan Hospital of Wuhan University
ID : ZNLH201901

Informations de copyright

© 2024. The Author(s).

Références

Stupp, R. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-Year analysis of the EORTC-NCIC trial. Lancet Oncol. 10(5), 459–466 (2009).
pubmed: 19269895 doi: 10.1016/S1470-2045(09)70025-7
Stupp, R. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 352(10), 987–996 (2005).
pubmed: 15758009 doi: 10.1056/NEJMoa043330
Stupp, R., Brada, M., van den Bent, M. J., Tonn, J. C. & Pentheroudakis, G. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2(Suppl 3), iii93–iii101 (2014).
doi: 10.1093/annonc/mdu050
Hegi, M. E. et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 352(10), 997–1003 (2005).
pubmed: 15758010 doi: 10.1056/NEJMoa043331
Grossman, S. A. et al. Survival of patients with newly diagnosed glioblastoma treated with radiation and temozolomide in research studies in the United States. Clin. Cancer Res. 16(8), 2443–2449 (2010).
pubmed: 20371685 doi: 10.1158/1078-0432.CCR-09-3106
Noch, E. K., Ramakrishna, R. & Magge, R. Challenges in the treatment of glioblastoma: Multisystem mechanisms of therapeutic resistance. World Neurosurg. 116, 505–517 (2018).
pubmed: 30049045 doi: 10.1016/j.wneu.2018.04.022
Peng, W. X., Koirala, P. & Mo, Y. Y. LncRNA-mediated regulation of cell signaling in cancer. Oncogene 36(41), 5661–5667 (2017).
pubmed: 28604750 doi: 10.1038/onc.2017.184
Peng, Z., Liu, C. & Wu, M. New insights into long noncoding RNAs and their roles in glioma. Mol. Cancer 17(1), 61 (2018).
pubmed: 29458374 doi: 10.1186/s12943-018-0812-2
Jing, S. Y. et al. Expression of long non-coding RNA CRNDE in glioma and its correlation with tumor progression and patient survival. Eur. Rev. Med. Pharmacol. Sci. 20(19), 3992–3996 (2016).
pubmed: 27775801
Ma, K.-X. et al. Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour. Biol. 36(5), 3355–3359 (2015).
pubmed: 25613066 doi: 10.1007/s13277-014-2969-7
Shen, J. et al. Serum HOTAIR and GAS5 levels as predictors of survival in patients with glioblastoma. Mol. Carcinog. 57(1), 137–141 (2018).
pubmed: 28926136 doi: 10.1002/mc.22739
Xiao, Y. et al. Expression and prognostic value of long non-coding RNA H19 in glioma via integrated bioinformatics analyses. Aging 12(4), 3407–3430 (2020).
pubmed: 32081833 doi: 10.18632/aging.102819
Chen, X. et al. Mechanisms and functions of long non-coding RNAs in glioma (review). Oncol. Rep. 45(4), 9 (2021).
pubmed: 33649805 doi: 10.3892/or.2021.7960
Wang, X. et al. Serum-derived extracellular vesicles facilitate temozolomide resistance in glioblastoma through a HOTAIR-dependent mechanism. Cell Death Dis. 13(4), 344 (2022).
pubmed: 35418162 doi: 10.1038/s41419-022-04699-8
Zhang, J., Chen, G., Gao, Y. & Liang, H. HOTAIR/miR-125 axis-mediated Hexokinase 2 expression promotes chemoresistance in human glioblastoma. J. Cell. Mol. Med. 24(10), 5707–5717 (2020).
pubmed: 32279420 doi: 10.1111/jcmm.15233
Anastas, J. N. & Moon, R. T. WNT signalling pathways as therapeutic targets in cancer. Nat. Rev. Cancer 13(1), 11–26 (2013).
pubmed: 23258168 doi: 10.1038/nrc3419
Wu, P. et al. Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat. Commun. 10(1), 2045 (2019).
pubmed: 31053733 doi: 10.1038/s41467-019-10025-2
Murat, A. et al. Stem cell-related “self-renewal” signature and high epidermal growth factor receptor expression associated with resistance to concomitant chemoradiotherapy in glioblastoma. J. Clin. Oncol. 26(18), 3015–3024 (2008).
pubmed: 18565887 doi: 10.1200/JCO.2007.15.7164
Louis, D. N. et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol. 23(8), 1231–1251 (2021).
pubmed: 34185076 doi: 10.1093/neuonc/noab106
Gravendeel, L. A. et al. Intrinsic gene expression profiles of gliomas are a better predictor of survival than histology. Cancer Res. 69(23), 9065–9072 (2009).
pubmed: 19920198 doi: 10.1158/0008-5472.CAN-09-2307
Lee, S. Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 3(3), 198–210 (2016).
pubmed: 30258889 doi: 10.1016/j.gendis.2016.04.007
Newlands, E. S., Stevens, M. F., Wedge, S. R., Wheelhouse, R. T. & Brock, C. Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat. Rev. 23(1), 35–61 (1997).
pubmed: 9189180 doi: 10.1016/S0305-7372(97)90019-0
Zhang, J., Stevens, M. F. G. & Bradshaw, T. D. Temozolomide: Mechanisms of action, repair and resistance. Curr. Mol. Pharmacol. 5(1), 102–114 (2012).
pubmed: 22122467 doi: 10.2174/1874467211205010102
Gerson, S. L. Clinical relevance of MGMT in the treatment of cancer. J. Clin .Oncol. 20(9), 2388–2399 (2002).
pubmed: 11981013 doi: 10.1200/JCO.2002.06.110
Bobola, M. S., Tseng, S. H., Blank, A., Berger, M. S. & Silber, J. R. Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin. Cancer Res. 2(4), 735–741 (1996).
pubmed: 9816224
Wiewrodt, D. et al. MGMT in primary and recurrent human glioblastomas after radiation and chemotherapy and comparison with p53 status and clinical outcome. Int. J. Cancer 122(6), 1391–1399 (2008).
pubmed: 18000822 doi: 10.1002/ijc.23219
Gwak, J. et al. Small molecule-based disruption of the Axin/β-catenin protein complex regulates mesenchymal stem cell differentiation. Cell Res. 22(1), 237–247 (2012).
pubmed: 21826110 doi: 10.1038/cr.2011.127
Salmena, L., Poliseno, L., Tay, Y., Kats, L. & Pandolfi, P. P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language?. Cell 146(3), 353–358 (2011).
pubmed: 21802130 pmcid: 3235919 doi: 10.1016/j.cell.2011.07.014
Penna, E., Orso, F. & Taverna, D. miR-214 as a key hub that controls cancer networks: Small player, multiple functions. J. Invest. Dermatol. 135(4), 960–969 (2015).
pubmed: 25501033 doi: 10.1038/jid.2014.479
Wang, X. et al. MiR-214 inhibits cell growth in hepatocellular carcinoma through suppression of β-catenin. Biochem. Biophys. Res. Commun. 428(4), 525–531 (2012).
pubmed: 23068095 doi: 10.1016/j.bbrc.2012.10.039
Dong, L. & Hui, L. HOTAIR promotes proliferation, migration, and invasion of ovarian cancer SKOV3 cells through regulating PIK3R3. Med. Sci. Monit. 22, 325–331 (2016).
pubmed: 26826873 pmcid: 4750754 doi: 10.12659/MSM.894913
Tang, Q. et al. Novel reciprocal interaction of lncRNA HOTAIR and miR-214-3p contribute to the solamargine-inhibited PDPK1 gene expression in human lung cancer. J. Cell. Mol. Med. 23(11), 7749–7761 (2019).
pubmed: 31475459 pmcid: 6815775 doi: 10.1111/jcmm.14649
Zhou, Y., Wang, Y., Lin, M., Wu, D. & Zhao, M. LncRNA HOTAIR promotes proliferation and inhibits apoptosis by sponging miR-214-3p in HPV16 positive cervical cancer cells. Cancer Cell Int. 21(1), 400 (2021).
pubmed: 34320988 pmcid: 8317292 doi: 10.1186/s12935-021-02103-7
Liu, B. et al. The HOTAIR/miR-214/ST6GAL1 crosstalk modulates colorectal cancer procession through mediating sialylated c-Met via JAK2/STAT3 cascade. J. Exp. Clin. Cancer Res. 38(1), 455 (2019).
pubmed: 31694696 pmcid: 6836492 doi: 10.1186/s13046-019-1468-5
Lassman, A. B. et al. Systemic high-dose intravenous methotrexate for central nervous system metastases. J. Neurooncol. 78(3), 255–260 (2006).
pubmed: 16344918 doi: 10.1007/s11060-005-9044-6
Grommes, C., Rubenstein, J. L., DeAngelis, L. M., Ferreri, A. J. M. & Batchelor, T. T. Comprehensive approach to diagnosis and treatment of newly diagnosed primary CNS lymphoma. Neuro Oncol. 21(3), 296–305 (2019).
pubmed: 30418592 doi: 10.1093/neuonc/noy192
Zhang, X. et al. Role of non-coding RNAs and RNA modifiers in cancer therapy resistance. Mol. Cancer 19(1), 47 (2020).
pubmed: 32122355 pmcid: 7050132 doi: 10.1186/s12943-020-01171-z
Zhou, X. et al. HOTAIR is a therapeutic target in glioblastoma. Oncotarget 6(10), 8353–8365 (2015).
pubmed: 25823657 pmcid: 4480757 doi: 10.18632/oncotarget.3229
Brantjes, H., Barker, N., van Es, J. & Clevers, H. TCF: Lady Justice casting the final verdict on the outcome of Wnt signalling. Biol. Chem. 383(2), 255–261 (2002).
pubmed: 11934263 doi: 10.1515/BC.2002.027
Cadigan, K. M. Wnt/beta-catenin signaling: turning the switch. Dev. Cell. 14(3), 322–323 (2008).
pubmed: 18331712 doi: 10.1016/j.devcel.2008.02.006
Parsons, M. J., Tammela, T. & Dow, L. E. WNT as a driver and dependency in cancer. Cancer Discov. 11(10), 2413–2429 (2021).
pubmed: 34518209 doi: 10.1158/2159-8290.CD-21-0190
Moon, B.-S. et al. Role of oncogenic K-Ras in cancer stem cell activation by aberrant Wnt/β-catenin signaling. J. Natl. Cancer Inst. 106(2), 373 (2014).
doi: 10.1093/jnci/djt373
Wickström, M. et al. Wnt/β-catenin pathway regulates MGMT gene expression in cancer and inhibition of Wnt signalling prevents chemoresistance. Nat. Commun. 6, 8904 (2015).
pubmed: 26603103 doi: 10.1038/ncomms9904
Zhao, Y. H. et al. The clinical significance of O(6)-methylguanine-DNA methyltransferase promoter methylation status in adult patients with glioblastoma: a meta-analysis. Front. Neurol. 9, 127 (2018).
pubmed: 29619003 doi: 10.3389/fneur.2018.00127
Mansouri, A. et al. MGMT promoter methylation status testing to guide therapy for glioblastoma: Refining the approach based on emerging evidence and current challenges. Neuro Oncol. 21(2), 167–178 (2019).
pubmed: 30189035 doi: 10.1093/neuonc/noy132
Tan, S. K. et al. Serum long noncoding RNA HOTAIR as a novel diagnostic and prognostic biomarker in glioblastoma multiforme. Mol. Cancer 17(1), 74 (2018).
pubmed: 29558959 doi: 10.1186/s12943-018-0822-0
Cantile, M. et al. HOTAIR role in melanoma progression and its identification in the blood of patients with advanced disease. J. Cell. Physiol. 232(12), 3422–3432 (2017).
pubmed: 28067428 doi: 10.1002/jcp.25789
Wang, W. et al. Serum HOTAIR as a novel diagnostic biomarker for esophageal squamous cell carcinoma. Mol. Cancer 16(1), 75 (2017).
pubmed: 28376832 doi: 10.1186/s12943-017-0643-6
Zhang, L. et al. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res. Treat. 152(1), 199–208 (2015).
pubmed: 26033707 doi: 10.1007/s10549-015-3431-2
Robien, K., Boynton, A. & Ulrich, C. M. Pharmacogenetics of folate-related drug targets in cancer treatment. Pharmacogenomics 6(7), 673–689 (2005).
pubmed: 16207145 doi: 10.2217/14622416.6.7.673
Park, D. M. & Abrey, L. E. Pharmacotherapy of primary CNS lymphoma. Expert Opin. Pharmacother. 3(1), 39–49 (2002).
pubmed: 11772332 doi: 10.1517/14656566.3.1.39
Wolff, J. E. et al. High dose methotrexate for pediatric high grade glioma: Results of the HIT-GBM-D pilot study. J. Neurooncol. 102(3), 433–442 (2011).
pubmed: 20694800 doi: 10.1007/s11060-010-0334-2
Tan, J., Dan, J. & Liu, Y. Clinical efficacy of methotrexate combined with iguratimod on patients with rheumatoid arthritis and its influence on the expression levels of HOTAIR in serum. Biomed. Res. Int. 2021, 2486617 (2021).
pubmed: 34805398 doi: 10.1155/2021/2486617
Angelopoulou, E., Paudel, Y. N. & Piperi, C. Critical role of HOX transcript antisense intergenic RNA (HOTAIR) in gliomas. J. Mol. Med. 98(11), 1525–1546 (2020).
pubmed: 32978667 doi: 10.1007/s00109-020-01984-x
Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43(7), e47 (2015).
pubmed: 25605792 pmcid: 4402510 doi: 10.1093/nar/gkv007
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinform. 14, 7 (2013).
doi: 10.1186/1471-2105-14-7
Quon, G. et al. Computational purification of individual tumor gene expression profiles leads to significant improvements in prognostic prediction. Genome Med. 5(3), 29 (2013).
pubmed: 23537167 doi: 10.1186/gm433
Geeleher, P. et al. Discovering novel pharmacogenomic biomarkers by imputing drug response in cancer patients from large genomics studies. Genome Res. 27(10), 1743–1751 (2017).
pubmed: 28847918 doi: 10.1101/gr.221077.117

Auteurs

Tian Lan (T)

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Wei Quan (W)

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Dong-Hu Yu (DH)

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Xi Chen (X)

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.

Ze-Fen Wang (ZF)

Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, Hubei, China. wangzf@whu.edu.cn.

Zhi-Qiang Li (ZQ)

Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China. lizhiqiang@whu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH