Innovative label-free lymphoma diagnosis using infrared spectroscopy and machine learning on tissue sections.


Journal

Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 09 04 2024
accepted: 21 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

The diagnosis of lymphomas is challenging due to their diverse histological presentations and clinical manifestations. There is a need for inexpensive tools that require minimal expertise and are accessible for routine laboratories. Contrastingly, current conventional diagnostic methods are often found only in specialized environments. Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy offers a nondestructive and user-friendly approach in the analysis of a wide range of samples. In this paper, we determined whether the technique coupled with machine learning can detect and differentiate lymphoma within lymphoid tissue samples. Tissue sections from 295 individuals diagnosed with lymphoma and 389 individuals without the disease were analyzed using ATR-FTIR spectroscopy. The resulting spectral dataset was split using a 70:30 train-test split. Partial least Squares Discriminant Analysis (PLS-DA) models were trained to distinguish non-malignant lymphoid tissue from lymphoma samples and to differentiate between subtypes. On the training set (n = 478), significant spectral differences were mainly identified in the 1800-900 cm

Identifiants

pubmed: 39482420
doi: 10.1038/s42003-024-07111-7
pii: 10.1038/s42003-024-07111-7
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1419

Informations de copyright

© 2024. The Author(s).

Références

Coupland, S. E. et al. The fifth edition of the WHO classification of mature B-cell neoplasms: open questions for research. J. Pathol. 262, 255–270 (2024).
doi: 10.1002/path.6246 pubmed: 38180354
Alaggio, R. et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia 36, 1720–1748 (2022).
doi: 10.1038/s41375-022-01620-2 pubmed: 35732829 pmcid: 9214472
Chu, Y. et al. The epidemiological patterns of non-Hodgkin lymphoma: global estimates of disease burden, risk factors, and temporal trends. Front. Oncol. 13, 1059914 (2023).
doi: 10.3389/fonc.2023.1059914 pubmed: 37333805 pmcid: 10272809
Cho, J. Basic immunohistochemistry for lymphoma diagnosis. Blood Res. 57, 55–61 (2022).
doi: 10.5045/br.2022.2022037 pubmed: 35483927 pmcid: 9057666
Blomme, S. et al. Alternative genetic alterations of MYC, BCL2, and/or BCL6 in high-grade B-cell lymphoma (HGBL) and diffuse large B-cell lymphoma (DLBCL): can we identify different prognostic subgroups? Genes Chromosomes Cancer 63, e23211 (2024).
doi: 10.1002/gcc.23211 pubmed: 37897298
Scheijde-Vermeulen, M. A., Kester, L. A., Westera, L., Tops, B. B. J. & Meyer-Wentrup, F. A. G. Integration of RNA sequencing, whole exome sequencing, and flow cytometry into routine diagnostic workup of pediatric lymphomas. Lab Invest. 104, 100267 (2024).
doi: 10.1016/j.labinv.2023.100267 pubmed: 37898291
Marini, C. et al. Divergent oxidative stress in normal tissues and inflammatory cells in Hodgkin and non-Hodgkin lymphoma. Cancers 15, 3533 (2023).
doi: 10.3390/cancers15133533 pubmed: 37444643 pmcid: 10341255
Theakstone, A. G., Brennan, P. M., Jenkinson, M. D., Goodacre, R. & Baker, M. J. Investigating centrifugal filtration of serum-based FTIR spectroscopy for the stratification of brain tumours. PLoS ONE 18, e0279669 (2023).
doi: 10.1371/journal.pone.0279669 pubmed: 36800340 pmcid: 9937474
De Bruyne, S., Speeckaert, M. M. & Delanghe, J. R. Applications of mid-infrared spectroscopy in the clinical laboratory setting. Crit. Rev. Clin. Lab Sci. 55, 1–20 (2018).
doi: 10.1080/10408363.2017.1414142 pubmed: 29239240
Tugrul, F. et al. A biospectroscopic approach toward colorectal cancer diagnosis from bodily fluid samples via ATR-MIR spectroscopy combined with multivariate data analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 304, 123342 (2024).
doi: 10.1016/j.saa.2023.123342 pubmed: 37688884
Zhang, S. et al. Complete characterization of RNA biomarker fingerprints using a multi-modal ATR-FTIR and SERS approach for label-free early breast cancer diagnosis. RSC Adv. 14, 3599–3610 (2024).
doi: 10.1039/D3RA05723B pubmed: 38264270 pmcid: 10804230
Roman, M., Wrobel, T. P., Panek, A. & Kwiatek, W. M. High-definition FT-IR reveals a synergistic effect on lipid accumulation in prostate cancer cells induced by a combination of X-rays and radiosensitizing drugs. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1869, 159468 (2024).
doi: 10.1016/j.bbalip.2024.159468 pubmed: 38408538
Martin, F. L. et al. Point-of-care disease screening in primary care using saliva: a biospectroscopy approach for lung cancer and prostate cancer. J. Pers. Med. 13, 1533 (2023).
doi: 10.3390/jpm13111533 pubmed: 38003848 pmcid: 10672293
Dyba, T. et al. The European cancer burden in 2020: Incidence and mortality estimates for 40 countries and 25 major cancers. Eur. J. Cancer 157, 308–347 (2021).
doi: 10.1016/j.ejca.2021.07.039 pubmed: 34560371 pmcid: 8568058
Martens, J. et al. Molecular identification in metabolomics using infrared ion spectroscopy. Sci. Rep. 7, 3363 (2017).
doi: 10.1038/s41598-017-03387-4 pubmed: 28611404 pmcid: 5469762
Stuart, B. Infrared Spectroscopy: Fundamentals and Applications (J. Wiley, Chichester, West Sussex, England; Hoboken, NJ, 2004).
Lee, J. H. et al. Prediction of immunochemotherapy response for diffuse large B-cell lymphoma using artificial intelligence digital pathology. J. Pathol. Clin. Res. 10, e12370 (2024).
doi: 10.1002/2056-4538.12370 pubmed: 38584594 pmcid: 10999948
Syrykh, C. et al. Accurate diagnosis of lymphoma on whole-slide histopathology images using deep learning. NPJ Digit. Med. 3, 1–8 (2020).
doi: 10.1038/s41746-020-0272-0
Wu, M. et al. Deep learning data augmentation for Raman spectroscopy cancer tissue classification. Sci. Rep. 11, 23842 (2021).
doi: 10.1038/s41598-021-02687-0 pubmed: 34903743 pmcid: 8668947
Priyatikanto, R., Lu, Y., Dash, J. & Sheffield, J. Improving generalisability and transferability of machine-learning-based maize yield prediction model through domain adaptation. Agric. Forest Meteorol. 341, 109652 (2023).
doi: 10.1016/j.agrformet.2023.109652
Rodriguez, A. et al. Nanoscale structural characterization of transthyretin aggregates formed at different time points of protein aggregation using atomic force microscopy-infrared spectroscopy. Protein Sci. 32, e4838 (2023).
doi: 10.1002/pro.4838 pubmed: 37967043
Almasmoum, H. A. Molecular complexity of diffuse large B-cell lymphoma: a molecular perspective and therapeutic implications. J. Appl. Genetics 65, 57–72 (2024).
doi: 10.1007/s13353-023-00804-5
Masel, R., Roche, M. E. & Martinez-Outschoorn, U. Hodgkin lymphoma: a disease shaped by the tumor micro- and macroenvironment. Best Pract. Res. Clin. Haematol. 36, 101514 (2023).
doi: 10.1016/j.beha.2023.101514 pubmed: 38092473
He, J., Zhou, Y. & Sun, L. Emerging mechanisms of the unfolded protein response in therapeutic resistance: from chemotherapy to Immunotherapy. Cell Commun. Signal 22, 89 (2024).
doi: 10.1186/s12964-023-01438-0 pubmed: 38297380 pmcid: 10832166
Pulumati, A., Pulumati, A., Dwarakanath, B. S., Verma, A. & Papineni, R. V. L. Technological advancements in cancer diagnostics: Improvements and limitations. Cancer Rep. 6, e1764 (2023).
doi: 10.1002/cnr2.1764
Xia, A., Zhang, Y., Xu, J., Yin, T. & Lu, X.-J. T cell dysfunction in cancer immunity and immunotherapy. Front. Immunol. 10, 1719 (2019).
doi: 10.3389/fimmu.2019.01719 pubmed: 31379886 pmcid: 6659036
Cameron, J. M. et al. A spectroscopic liquid biopsy for the earlier detection of multiple cancer types. Br. J. Cancer 129, 1658–1666 (2023).
doi: 10.1038/s41416-023-02423-7 pubmed: 37717120 pmcid: 10645969

Auteurs

Charlotte Delrue (C)

Department of Nephrology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.

Mattias Hofmans (M)

Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.

Jo Van Dorpe (J)

Department of Pathology, Ghent University Hospital, Ghent, Belgium.

Malaïka Van der Linden (M)

Department of Pathology, Ghent University Hospital, Ghent, Belgium.

Zen Van Gaever (Z)

Data & AI, Delaware, Ghent, Belgium.

Tessa Kerre (T)

Department of Hematology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.

Marijn M Speeckaert (MM)

Department of Nephrology, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, Belgium.
Research Foundation-Flanders (FWO), Brussels, Belgium.

Sander De Bruyne (S)

Department of Diagnostic Sciences, Ghent University, Ghent, Belgium. SanderR.Debruyne@ugent.be.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH