Necroptosis as a consequence of photodynamic therapy in tumor cells.
Cancer
Cell death
Necroptosis
Photodynamic therapy
Journal
Lasers in medical science
ISSN: 1435-604X
Titre abrégé: Lasers Med Sci
Pays: England
ID NLM: 8611515
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
01
07
2024
accepted:
17
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Photodynamic therapy (PDT) is an alternative to cancer treatment, demonstrating selectivity and significant cytotoxicity on malignant tissues. Such therapy involves two nontoxic components: photosensitizer (PS) and non-ionizing radiation. In optimal dosage combinations, PDT causes cellular and tissue effects by oxygen-dependent processes, leading tumor cells to regulated cell death pathways. Regulated necrosis, called necroptosis, can be triggered by PDT and is characterized by caspase-8 inhibition and RIPK1, RIPK3, and MLKL activities, leading to plasma membrane pores formation with subsequent cellular content release into the extracellular space. For this review, studies accessed by PubMed describing the relation between necroptosis and PDT were summarized. The results showed that PDT can trigger necroptosis mechanisms in different tumor cells. Moreover, a mix of different cell death types can co-occur. It is also important to highlight that necroptosis triggered by PDT is related to damage-associated molecular patterns (DAMPs) release, involving immunogenic cell death and vaccination. The cell death response is directly related to the photosensitizer chemical characteristics, concentration, incubation time, cellular location, and irradiation parameters. The synergism among all cell death types is an excellent advantage for avowing tumor resistance mechanisms and developing new solutions.
Identifiants
pubmed: 39482559
doi: 10.1007/s10103-024-04218-5
pii: 10.1007/s10103-024-04218-5
doi:
Substances chimiques
Photosensitizing Agents
0
Receptor-Interacting Protein Serine-Threonine Kinases
EC 2.7.11.1
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
267Subventions
Organisme : Fundação de Amparo à Pesquisa do Estado de Minas Gerais
ID : APQ 00860/22
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.
Références
Dolmans D, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387. https://doi.org/10.1038/nrc1071
doi: 10.1038/nrc1071
pubmed: 12724736
Mishchenko T, Balalaeva I, Gorokhova A, Vedunova M, Krisko D (2022) Which cell death modality wins the contest for photodynamic therapy of cancer? Cell Death Dis 13:455. https://doi.org/10.1038/s41419-022-04851-4
doi: 10.1038/s41419-022-04851-4
pubmed: 35562364
pmcid: 9106666
Gunaydin G, Gedik ME, Ayan S (2021) Photodynamic therapy - current limitations and novel approaches. Front Chem. https://doi.org/10.3389/fchem.2021.691697
doi: 10.3389/fchem.2021.691697
pubmed: 34409014
pmcid: 8365093
Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281. https://doi.org/10.3322/caac.20114
doi: 10.3322/caac.20114
pubmed: 21617154
pmcid: 3209659
Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 1:279–293. https://doi.org/10.1016/s1572-1000(05)00007-4
doi: 10.1016/s1572-1000(05)00007-4
pubmed: 25048432
pmcid: 4108220
Alzeibak R, Mishchenko TA, Shilyagina NY, Balalaeva IV, Vedunova MV, Krysko DV (2021) Targeting immunogenic cancer cell death by photodynamic therapy: past, present and future. J Immunother Cancer 9. https://doi.org/10.1136/jitc-2020-001926
Tang D, Kang R, Berghe TV, Vandenabeele P, Kroemer G (2019) The molecular machinery of regulated cell death. Cell Res 29:347–364. https://doi.org/10.1038/s41422-019-0164-5
doi: 10.1038/s41422-019-0164-5
pubmed: 30948788
pmcid: 6796845
Martins WK, Belotto R, Silva MN, Grasso D, Suriani MD, Lavor TS et al (2021) Autophagy regulation and photodynamic therapy: insights to improve outcomes of cancer treatment. Front Oncol 10:610472. https://doi.org/10.3389/fonc.2020.610472
doi: 10.3389/fonc.2020.610472
pubmed: 33552982
pmcid: 7855851
Kaczmarek A, Vandenabeele P, Krysko DV (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38:209–223. https://doi.org/10.1016/j.immuni.2013.02.003
doi: 10.1016/j.immuni.2013.02.003
pubmed: 23438821
Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S et al (2000) Fas triggers an alternative, caspase-8–independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495. https://doi.org/10.1038/82732
doi: 10.1038/82732
pubmed: 11101870
Goodall ML, Cramer SD, Thorburn A (2016) Autophagy complexes cell death by necroptosis. Oncotarget 7(32):50818–50819. https://doi.org/10.18632/oncotarget.10640
doi: 10.18632/oncotarget.10640
pubmed: 27449298
pmcid: 5239436
Zhang Y, Cheung YK, Ng DKP, Fong WP (2021) Immunogenic necroptosis in the anti-tumor photodynamic action of BAM-SiPc, a silicon(IV) phthalocyanine-based photosensitizer. Cancer Immunol Immunother 70:485–495. https://doi.org/10.1007/s00262-020-02700-x
doi: 10.1007/s00262-020-02700-x
pubmed: 32839829
Chen J, Zhang R, Tao C, Huang X, Chen Z, Li X et al (2020) CuS–NiS2 nanomaterials for MRI guided phototherapy of gastric carcinoma via triggering mitochondria-mediated apoptosis and MLKL/CAPG-mediated necroptosis. Nanotoxicology 14:774–787. https://doi.org/10.1080/17435390.2020.1759727
doi: 10.1080/17435390.2020.1759727
pubmed: 32401088
Niu N, Yu Y, Zhang Z, Kang M, Wang L, Zhao Z et al (2022) A cell membrane-targeting AIE photosensitizer as a necroptosis inducer for boosting cancer theranostics. Chem Sci 13:5929–5937. https://doi.org/10.1039/d2sc01260j
doi: 10.1039/d2sc01260j
pubmed: 35685806
pmcid: 9132078
Sun M, Zhou C, Zeng H, Puebla-Osorio N, Damiani E, Chen J et al (2015) Hiporfin-mediated photodynamic therapy in preclinical treatment of osteosarcoma. Photochem Photobiol 91:533–544. https://doi.org/10.1111/php.12424
doi: 10.1111/php.12424
pubmed: 25619546
Turubanova VD, Balalaeva IV, Mishchenko TA, Catanzaro E, Alzeibak R, Peskova NN et al (2019) Immunogenic cell death induced by a new photodynamic therapy based on photosens and photodithazine. J Immunother Cancer 7:350. https://doi.org/10.1186/s40425-019-0826-3
doi: 10.1186/s40425-019-0826-3
pubmed: 31842994
pmcid: 6916435
Turubanova VD, Mishchenko TA, Balalaeva IV, Efimova I, Peskova NN, Klapshina LG et al (2021) Novel porphyrazine-based photodynamic anti-cancer therapy induces immunogenic cell death. Sci Rep 11:7205. https://doi.org/10.1038/s41598-021-86354-4
doi: 10.1038/s41598-021-86354-4
pubmed: 33785775
pmcid: 8010109
Coupienne I, Fettweis G, Rubio N, Agostinis P, Piette J (2011) 5-ALA-PDT induces RIP3-dependent necrosis in glioblastoma. Photochem Photobiol Sci 10:1868–1878. https://doi.org/10.1039/c1pp05213f
doi: 10.1039/c1pp05213f
pubmed: 22033613
Miki Y, Akimoto J, Moritake K, Hironaka C, Fujiwara Y (2015) Photodynamic therapy using talaporfin sodium induces concentration-dependent programmed necroptosis in human glioblastoma T98G cells. Lasers Med Sci 30:1739–1745. https://doi.org/10.1007/s10103-015-1783-9
doi: 10.1007/s10103-015-1783-9
pubmed: 26109138
Chen W, Wang X, Zhao B, Zhang R, Xie Z, He Y et al (2019) CuS–MnS2 nano-flowers for magnetic resonance imaging guided photothermal/photodynamic therapy of ovarian cancer through necroptosis. Nanoscale 11:12983–12989. https://doi.org/10.1039/c9nr03114f
doi: 10.1039/c9nr03114f
pubmed: 31264665
Mohammadalipour Z, Rahmati M, Khataee A, Moosavi MA (2020) Differential effects of N-TiO2 nanoparticle and its photo-activated form on autophagy and necroptosis in human melanoma A375 cells. J Cell Physiol 235:8246–8259. https://doi.org/10.1002/jcp.29479
doi: 10.1002/jcp.29479
pubmed: 31989650
Santos AF, Inague A, Arini GS, Terra LF, Wailemann RAM, Pimentel AC et al (2020) Distinct photo-oxidation-induced cell death pathways lead to selective killing of human breast cancer cells. Cell Death Dis 11:1070. https://doi.org/10.1038/s41419-020-03275-2
doi: 10.1038/s41419-020-03275-2
pubmed: 33318476
pmcid: 7736888
Lanquist AP, Gupta S, Al-Afyouni KF, Al-Afyouni M, Kodanko JJ, Turro C (2021) Trifluoromethyl substitution enhances photoinduced activity against breast cancer cells but reduces ligand exchange in Ru(ii) complex. Chem Sci 12:12056–12067. https://doi.org/10.1039/D1SC03213E
doi: 10.1039/D1SC03213E
pubmed: 34667571
pmcid: 8457392
Zheng X, Liu M, Wu Y, Chen Y, He W, Guo Z (2024) An AIE-based monofunctional pt(II) complex for photodynamic therapy through synergism of necroptosis–ferroptosis. RSC Chem Biol 5:141–147. https://doi.org/10.1039/d3cb00113j
doi: 10.1039/d3cb00113j
pubmed: 38333194
Gomes LCM, Cunha ABO, Peixoto LFF, Zanon RG, Botelho FV, Silva MJB et al (2023) Photodynamic therapy reduces cell viability, migration and triggers necroptosis in prostate tumor cells. Photochem Photobiol Sci 22:1341–1356. https://doi.org/10.1007/s43630-023-00382-9
doi: 10.1007/s43630-023-00382-9
Almeida DRQ, Santos AF, Wailemann RAM, Terra LF, Gomes VM, Arini GS et al (2023) Necroptosis activation is associated with greater methylene blue-photodynamic therapy-induced cytotoxicity in human pancreatic ductal adenocarcinoma cells. Photochem Photobiol Sci 22:729–744. https://doi.org/10.1007/s43630-022-00347-4
doi: 10.1007/s43630-022-00347-4
pubmed: 36495407
Liu Y, Zhu M, Gong R, Wang X, Li L, Xu G (2020) Pre-treatment with ranibizumab aggravates PDT injury and alleviates inflammatory response in choroid-retinal endothelial cells. Front Cell Dev Biol 8:608. https://doi.org/10.3389/fcell.2020.00608
doi: 10.3389/fcell.2020.00608
pubmed: 32733897
pmcid: 7363772
Wang L, Chelakkot VS, Newhook N, Tucker S, Hirasawa K (2023) Inflammatory cell death induced by 5-aminolevulinic acid-photodynamic therapy initiates anticancer immunity. Front Oncol 13:1156763. https://doi.org/10.3389/fonc.2023.1156763
doi: 10.3389/fonc.2023.1156763
pubmed: 37854679
pmcid: 10581343
Tardivo JP, Giglio A, Oliveira CS, Gabrielli DS, Junqueira HC, Tada DB et al (2005) Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis Photodyn Ther 2:175–191. https://doi.org/10.1016/S1572-1000(05)00097-9
doi: 10.1016/S1572-1000(05)00097-9
pubmed: 25048768
Galvan J, Borsoi MX, Julek L, Bordin D, Cabral LPA, Pomini MC et al (2021) Methylene blue for the treatment of health conditions: a scoping review. Braz Arch Biol Technol. https://doi.org/10.1590/1678-4324-20212002660266
doi: 10.1590/1678-4324-20212002660266
Inoue H, Tani K (2014) Multimodal immunogenic cancer cell death as a consequence of anticancer cytotoxic treatments. Cell Death Differ 21:39–49. https://doi.org/10.1038/cdd.2013.84
doi: 10.1038/cdd.2013.84
pubmed: 23832118
Garg AD, Krysko DV, Vandenabeele P, Agostinis P (2012) The emergence of phoxER stress induced immunogenic apoptosis. Oncoimmunology 1(5):786–788. https://doi.org/10.4161/onci.19750
doi: 10.4161/onci.19750
pubmed: 22934283
pmcid: 3429595
Zeng Q, Ma X, Song Y, Chen Q, Jiao Q, Zhou L (2022) Targeting regulated cell death in tumor nanomedicines. Theranostics 12:817–841. https://doi.org/10.7150/thno.67932
doi: 10.7150/thno.67932
pubmed: 34976215
pmcid: 8692918
Firczuk M, Nowis D, Gołąb J (2011) PDT-induced inflammatory and host responses. Photochem Photobiol Sci 10:653–663. https://doi.org/10.1039/c0pp00308e
doi: 10.1039/c0pp00308e
pubmed: 21258727
Yun DP, Wang YQ, Meng DL, Ji YY, Chen JX, Chen HY, Lu DR (2018) Actin-capping protein CapG is associated with prognosis, proliferation, and metastasis in human glioma. Oncol Rep 39(3):1011–1022. https://doi.org/10.3892/or.2018.6225
doi: 10.3892/or.2018.6225
pubmed: 29399702
pmcid: 5802022