Long-term cardiovascular outcomes of immune checkpoint inhibitor-related myocarditis: A large single-centre analysis.

Cardio‐oncology ICI‐related myocarditis Immune‐checkpoint inhibitor

Journal

ESC heart failure
ISSN: 2055-5822
Titre abrégé: ESC Heart Fail
Pays: England
ID NLM: 101669191

Informations de publication

Date de publication:
31 Oct 2024
Historique:
revised: 11 09 2024
received: 10 05 2024
accepted: 03 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: aheadofprint

Résumé

Immune checkpoint inhibitors (ICI) are the cornerstone of modern oncology; however, side effects such as ICI-related myocarditis (irM) can be fatal. Recently, Bonaca proposed criteria for irM; however, it is unknown if they correlate well with cardiovascular (CV) ICI-related adverse events. Additionally, whether incident irM portends worse long-term CV outcomes remains unclear. We aimed to determine the incidence of long-term CV comorbidities and CV mortality among irM patients. The ICI-related adverse event (irAE) registry was queried to identify irM patients by using Bonaca criteria. Random controls were selected after excluding patients with other concomitant irAEs. Patients' demographics, comorbidities and myocarditis presenting features were gathered. Outcomes included 2-year freedom from CV comorbidities (composite of atrial fibrillation, stroke, myocardial infarction and heart failure) and freedom from CV death. IrM was treated as a time-varying covariate. Seventy-six patients developed irM at a median of 167 days (mean age 69, 63.2% male, 47% lung cancer). Majority of patients had new wall motion abnormalities or EKG changes on presentation. Mean LVEF was 43%, median peak TnT was 0.81, and median NTproBNP was 2057 at irM onset. Two-year freedom from CV comorbidities (67% vs 86.8%, P < 0.001) and death (93.4% vs 99.3%, P = 0.003) was lower among irM patients. Incident irM was an independent predictor of CV death (HR 8.28, P = 0.048), but not CV comorbidities (HR 2.21, P = 0.080). This is the largest case-control study on irM highlighting worse long-term CV outcomes. Future studies are needed to establish appropriate therapeutic strategies and efficient screening strategies for irM survivors.

Identifiants

pubmed: 39482568
doi: 10.1002/ehf2.15131
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Informations de copyright

© 2024 The Author(s). ESC Heart Failure published by John Wiley & Sons Ltd on behalf of European Society of Cardiology.

Références

Gentzler R, Hall R, Kunk PR, Gaughan E, Dillon P, Slingluff CL Jr, et al. Beyond melanoma: Inhibiting the PD‐1/PD‐L1 pathway in solid tumors. Immunotherapy 2016;8:583‐600. doi:10.2217/imt‐2015‐0029
Postow MA, Callahan MK, Wolchok JD. Immune checkpoint blockade in cancer therapy. J Clin Oncol 2015;33:1974‐1982. doi:10.1200/JCO.2014.59.4358
Tang J, Yu JX, Hubbard‐Lucey VM, Neftelinov ST, Hodge JP, Lin Y. Trial watch: The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors. Nat Rev Drug Discov 2018;17:854‐855. doi:10.1038/nrd.2018.210
Shao J, Wang C, Ren P, Jiang Y, Tian P, Li W. Treatment‐ and immune‐related adverse events of immune checkpoint inhibitors in advanced lung cancer. Biosci Rep 2020;40:BSR20192347. doi:10.1042/BSR20192347
Postow MA, Sidlow R, Hellmann MD. Immune‐related adverse events associated with immune checkpoint blockade. N Engl J Med 2018;378:158‐168. doi:10.1056/NEJMra1703481
Hoos A. Development of immuno‐oncology drugs ‐ from CTLA4 to PD1 to the next generations. Nat Rev Drug Discov 2016;15:235‐247. doi:10.1038/nrd.2015.35
Thu0628 immune‐related adverse events induced by cancer immunotherapies. Big data analysis of 13,051 cases (immunocancer international registry). Ann Rheum Dis https://ard.bmj.com/content/78/Suppl_2/607. Accessed June 2019.
Tang J, Pearce L, O'Donnell‐Tormey J, Hubbard‐Lucey VM. Trends in the global immuno‐oncology landscape. Nat Rev Drug Discov 2018;17:783‐784. doi:10.1038/nrd.2018.167
Salem J‐E, Manouchehri A, Moey M, Lebrun‐Vignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: An observational, retrospective, pharmacovigilance study. Lancet Oncol 2018;19:1579‐1589. doi:10.1016/S1470‐2045(18)30608‐9
Ball S, Ghosh RK, Wongsaengsak S, Bandyopadhyay D, Ghosh GC, Aronow WS, et al. Cardiovascular toxicities of immune checkpoint inhibitors: JACC review topic of the week. J Am Coll Cardiol 2019;74:1714‐1727. doi:10.1016/j.jacc.2019.07.079
Naqash AR, Moey MYY, Cherie Tan XW, Laharwal M, Hill V, Moka N, et al. Major adverse cardiac events with immune checkpoint inhibitors: A pooled analysis of trials sponsored by the National Cancer Institute—cancer therapy evaluation program. J Clin Oncol 2022;40:3439‐3452. doi:10.1200/JCO.22.00369
Moslehi JJ, Salem J‐E, Sosman JA, Lebrun‐Vignes B, Johnson DB. Increased reporting of fatal immune checkpoint inhibitor‐associated myocarditis. Lancet Lond Engl 2018;391:933. doi:10.1016/S0140‐6736(18)30533‐6
Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol 2018;71:1755‐1764. doi:10.1016/j.jacc.2018.02.037
Zhang L, Zlotoff DA, Awadalla M, Mahmood SS, Nohria A, Hassan MZO, et al. Major adverse cardiovascular events and the timing and dose of corticosteroids in immune checkpoint inhibitor‐associated myocarditis. Circulation 2020;141:2031‐2034. doi:10.1161/CIRCULATIONAHA.119.044703
Rubio‐Infante N, Ramírez‐Flores YA, Castillo EC, Lozano O, García‐Rivas G, Torre‐Amione G. Cardiotoxicity associated with immune checkpoint inhibitor therapy: A meta‐analysis. Eur J Heart Fail 2021;23:1739‐1747. doi:10.1002/ejhf.2289
Isawa T, Toi Y, Sugawara S, Taguri M, Toyoda S. Incidence, clinical characteristics, and predictors of cardiovascular immune‐related adverse events associated with immune checkpoint inhibitors. Oncologist 2022;27:e410‐e419. doi:10.1093/oncolo/oyac056
Zamami Y, Niimura T, Okada N, Koyama T, Fukushima K, Izawa‐Ishizawa Y, et al. Factors associated with immune checkpoint inhibitor‐related myocarditis. JAMA Oncol 2019;5:1635‐1637. doi:10.1001/jamaoncol.2019.3113
Bonaca MP, Olenchock BA, Salem JE, Wiviott SD, Ederhy S, Cohen A, et al. Myocarditis in the setting of cancer therapeutics: proposed case definitions for emerging clinical syndromes in cardio‐oncology. Circulation 2019;140:80‐91. doi:10.1161/CIRCULATIONAHA.118.034497
Ferreira VM, Schulz‐Menger J, Holmvang G, Kramer CM, Carbone I, Sechtem U, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: Expert recommendations. J Am Coll Cardiol 2018;72:3158‐3176. doi:10.1016/j.jacc.2018.09.072
Hicks KA, Mahaffey KW, Mehran R, Nissen SE, Wiviott SD, Dunn B, et al. 2017 cardiovascular and stroke endpoint definitions for clinical trials. Circulation 2018;137:961‐972. doi:10.1161/CIRCULATIONAHA.117.033502
Sacco RL, Kasner SE, Broderick JP, Caplan LR, Connors JJ, Culebras A, et al. An updated definition of stroke for the 21st century: A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013;44:2064‐2089. doi:10.1161/STR.0b013e318296aeca
Calkins H, Brugada J, Packer DL, Cappato R, Chen SA, Crijns HJ, et al. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow‐up. A report of the Heart Rhythm Society (HRS) task force on catheter and surgical ablation of atrial fibrillation developed in partnership with the European Heart Rhythm Association (EHRA) and the European Cardiac Arrhythmia Society (ECAS); in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), and the Society of Thoracic Surgeons (STS). Endorsed and approved by the governing bodies of the American College of Cardiology, the American Heart Association, the European Cardiac Arrhythmia Society, the European Heart Rhythm Association, the Society of Thoracic Surgeons, and the Heart Rhythm Society. Europace 2007;9:335‐379. doi:10.1093/europace/eum120
Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur J Heart Fail 2021;23:352‐380. doi:10.1002/ejhf.2115
Snapinn SM, Jiang Q, Iglewicz B. Illustrating the impact of a time‐varying covariate with an extended Kaplan‐Meier estimator. Am Stat 2005;59:301‐307. doi:10.1198/000313005X70371
Dolladille C, Ederhy S, Allouche S, Dupas Q, Gervais R, Madelaine J, et al. Late cardiac adverse events in patients with cancer treated with immune checkpoint inhibitors. J Immunother Cancer 2020;8:e000261. doi:10.1136/jitc‐2019‐000261
Palaskas N, Lopez‐Mattei J, Durand JB, Iliescu C, Deswal A. Immune checkpoint inhibitor myocarditis: Pathophysiological characteristics, diagnosis, and treatment. J Am Heart Assoc 2020;9:e013757. doi:10.1161/JAHA.119.013757
Palaskas NL, Segura A, Lelenwa L, Siddiqui BA, Subudhi SK, Lopez‐Mattei J, et al. Immune checkpoint inhibitor myocarditis: Elucidating the spectrum of disease through endomyocardial biopsy. Eur J Heart Fail 2021;23:1725‐1735. doi:10.1002/ejhf.2265
Tschöpe C, Ammirati E, Bozkurt B, Caforio ALP, Cooper LT, Felix SB, et al. Myocarditis and inflammatory cardiomyopathy: Current evidence and future directions. Nat Rev Cardiol 2021;18:169‐193. doi:10.1038/s41569‐020‐00435‐x
Diehl A, Yarchoan M, Hopkins A, Jaffee E, Grossman SA. Relationships between lymphocyte counts and treatment‐related toxicities and clinical responses in patients with solid tumors treated with PD‐1 checkpoint inhibitors. Oncotarget 2017;8:114268‐114280. doi:10.18632/oncotarget.23217
Pavan A, Calvetti L, Dal Maso A, Attili I, del Bianco P, Pasello G, et al. Peripheral blood markers identify risk of immune‐related toxicity in advanced non‐small cell lung cancer treated with immune‐checkpoint inhibitors. Oncologist 2019;24:1128‐1136. doi:10.1634/theoncologist.2018‐0563
Drobni ZD, Zafar A, Zubiri L, Zlotoff DA, Alvi RM, Lee C, et al. Decreased absolute lymphocyte count and increased neutrophil/lymphocyte ratio with immune checkpoint inhibitor‐associated myocarditis. J Am Heart Assoc 2020;9:e018306. doi:10.1161/JAHA.120.018306
Bhat T, Teli S, Rijal J, Bhat H, Raza M, Khoueiry G, et al. Neutrophil to lymphocyte ratio and cardiovascular diseases: A review. Expert Rev Cardiovasc Ther 2013;11:55‐59. doi:10.1586/erc.12.159
Guasti L, Dentali F, Castiglioni L, Maroni L, Marino F, Squizzato A, et al. Neutrophils and clinical outcomes in patients with acute coronary syndromes and/or cardiac revascularisation. A systematic review on more than 34,000 subjects. Thromb Haemost 2011;106:591‐599. doi:10.1160/TH11‐02‐0096
Carai P, González LF, van Bruggen S, Spalart V, de Giorgio D, Geuens N, et al. Neutrophil inhibition improves acute inflammation in a murine model of viral myocarditis. Cardiovasc Res 2023;118:3331‐3345. doi:10.1093/cvr/cvac052
Vinco G, Baessato F, Benfari G, Zivelonghi C, Puntel G, Donazzan L, et al. P868 neutrophil‐to‐lymphocyte ratio at the onset of acute myocarditis reflects the extent of myocardial necrosis. Eur Heart J 2018;39:ehy564.P868. doi:10.1093/eurheartj/ehy564.P868
Liang L, Cui C, Lv D, Li Y, Huang L, Feng J, et al. Inflammatory biomarkers in assessing severity and prognosis of immune checkpoint inhibitor‐associated cardiotoxicity. ESC Heart Fail 2023;10:1907‐1918. doi:10.1002/ehf2.14340
Wang D, Bauersachs J, Berliner D. Immune checkpoint inhibitor associated myocarditis and cardiomyopathy: A translational review. Biology 2023;12:472. doi:10.3390/biology12030472
Nso N, Antwi‐Amoabeng D, Beutler BD, Ulanja MB, Ghuman J, Hanfy A, et al. Cardiac adverse events of immune checkpoint inhibitors in oncology patients: A systematic review and meta‐analysis. World J Cardiol 2020;12:584‐598. doi:10.4330/wjc.v12.i11.584

Auteurs

Lorenzo Braghieri (L)

Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Ahmad Gharaibeh (A)

Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Lubika Nkashama (L)

Department of Internal Medicine, WashU/Barnes-Jewish Hospital, St. Louis, Missouri, USA.

Abdelrahman Abushouk (A)

Department of Internal Medicine, Yale University, New Haven, Connecticut, USA.

Osama Abushawer (O)

Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Amir Mehdizadeh-Shrifi (A)

Department of Cardiothoracic Surgery, Cincinnati Children's Hospital, Cincinnati, Ohio, USA.

Bianca Honnekeri (B)

Department of Internal Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Cassandra Calabrese (C)

Department of Rheumatologic and Immunologic Disease, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Venu Menon (V)

Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Pauline Funchain (P)

Department of Hematology & Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio, USA.

Patrick Collier (P)

Department of Cardiovascular Medicine, Division of Cardiac Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Diego Sadler (D)

Department of Cardiovascular Medicine, Division of Cardiac Imaging, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Weston, Florida, USA.

Rohit Moudgil (R)

Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA.

Classifications MeSH