Causal linkage of Graves' disease with aging: Mendelian randomization analysis of telomere length and age-related phenotypes.
Age-related phenotype
Aging
Graves’ disease
Mendelian randomization
Single nucleotide polymorphism
Journal
BMC geriatrics
ISSN: 1471-2318
Titre abrégé: BMC Geriatr
Pays: England
ID NLM: 100968548
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
11
10
2023
accepted:
13
09
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Aging is an irreversible progressive decline in physical function. Graves' disease (GD) is a common cause of hyperthyroidism and is characterized by elevated levels of the thyroid hormone (TH). High TH levels are associated with aging and a shortened lifespan. The causal relationship between GD and aging has yet to be investigated. We used genome-wide association study (GWAS) datasets and Mendelian randomization (MR) analysis to explore the causal link between GD and aging. To assess the statistical power of instrumental variables (IVs), F-statistics and R F-statistics of the five IVs were greater than 10, and the R GD accelerates the occurrence of age-related phenotypes including TL, senile cataracts, age-related hearing impairment, COPD, and sarcopenia. In contrast, there are no causal linkages between GD and facial aging, age-related macular degeneration, or Alzheimer's disease. Further experimental studies could be conducted to elucidate the mechanisms by which GD facilitates aging, which could help slow down the progress of aging.
Sections du résumé
BACKGROUND
BACKGROUND
Aging is an irreversible progressive decline in physical function. Graves' disease (GD) is a common cause of hyperthyroidism and is characterized by elevated levels of the thyroid hormone (TH). High TH levels are associated with aging and a shortened lifespan. The causal relationship between GD and aging has yet to be investigated.
METHODS
METHODS
We used genome-wide association study (GWAS) datasets and Mendelian randomization (MR) analysis to explore the causal link between GD and aging. To assess the statistical power of instrumental variables (IVs), F-statistics and R
RESULTS
RESULTS
F-statistics of the five IVs were greater than 10, and the R
CONCLUSIONS
CONCLUSIONS
GD accelerates the occurrence of age-related phenotypes including TL, senile cataracts, age-related hearing impairment, COPD, and sarcopenia. In contrast, there are no causal linkages between GD and facial aging, age-related macular degeneration, or Alzheimer's disease. Further experimental studies could be conducted to elucidate the mechanisms by which GD facilitates aging, which could help slow down the progress of aging.
Identifiants
pubmed: 39482583
doi: 10.1186/s12877-024-05379-2
pii: 10.1186/s12877-024-05379-2
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
901Subventions
Organisme : National Key Research and Development Program of China
ID : 2018YFE0207300
Organisme : Shengjing Hospital of China Medical University
ID : 345 Talent Project
Informations de copyright
© 2024. The Author(s).
Références
Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.
pubmed: 26646499
pmcid: 4748967
doi: 10.1038/nm.4000
Feng Q, Xia W, Dai G, Lv J, Yang J, Liu D, Zhang G. The aging features of thyrotoxicosis mice: malnutrition, immunosenescence and lipotoxicity. Front Immunol. 2022;13: 864929.
pubmed: 35720307
pmcid: 9201349
doi: 10.3389/fimmu.2022.864929
Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.
pubmed: 20051527
pmcid: 2852208
doi: 10.1210/er.2009-0007
Dittner C, Lindsund E, Cannon B, Nedergaard J. At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1. Mol Metabolism. 2019;25:20–34.
doi: 10.1016/j.molmet.2019.05.005
Gauthier BR, Sola-García A, Cáliz-Molina M, Lorenzo PI, Cobo-Vuilleumier N, Capilla-González V, Martin-Montalvo A. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11):e13260.
pubmed: 33048427
pmcid: 7681062
doi: 10.1111/acel.13260
Henning Y, Vole C, Begall S, Bens M, Broecker-Preuss M, Sahm A, Szafranski K, Burda H, Dammann P. Unusual ratio between free thyroxine and free triiodothyronine in a long-lived mole-rat species with bimodal ageing. PLoS One. 2014;9(11): e113698.
pubmed: 25409169
pmcid: 4237498
doi: 10.1371/journal.pone.0113698
Smith TJ, Hegedüs L. Graves’ disease. N Engl J Med. 2016;375(16):1552–65.
pubmed: 27797318
doi: 10.1056/NEJMra1510030
Bartalena L. Diagnosis and management of Graves disease: a global overview. Nat Reviews Endocrinol. 2013;9(12):724–34.
doi: 10.1038/nrendo.2013.193
Nyström HF, Jansson S, Berg G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol. 2013;78(5):768–76.
doi: 10.1111/cen.12060
Antonelli A, Ferrari SM, Ragusa F, Elia G, Paparo SR, Ruffilli I, Patrizio A, Giusti C, Gonnella D, Cristaudo A, et al. Graves’ disease: epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab. 2020;34(1): 101387.
pubmed: 32107168
doi: 10.1016/j.beem.2020.101387
Radziszewski M, Kuś A, Bednarczuk T. Genotype-phenotype correlations in Graves’ disease. Best Pract Res Clin Endocrinol Metab. 2023;37(2):101745.
pubmed: 36828713
doi: 10.1016/j.beem.2023.101745
Burch HB, Cooper DS. Management of Graves disease: a review. JAMA. 2015;314(23):2544–54.
pubmed: 26670972
doi: 10.1001/jama.2015.16535
Bahn Chair RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, Laurberg P, McDougall IR, Montori VM, Rivkees SA, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid: Official J Am Thyroid Association. 2011;21(6):593–646.
doi: 10.1089/thy.2010.0417
Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98.
pubmed: 25064373
pmcid: 4170722
doi: 10.1093/hmg/ddu328
Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.
pubmed: 17886233
doi: 10.1002/sim.3034
Fasching CL. Telomere length measurement as a clinical biomarker of aging and disease. Crit Rev Clin Lab Sci. 2018;55(7):443–65.
pubmed: 30265166
doi: 10.1080/10408363.2018.1504274
Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88(2):557–79.
pubmed: 18391173
doi: 10.1152/physrev.00026.2007
Park S, Kim SG, Lee S, Kim Y, Cho S, Kim K, Kim YC, Han SS, Lee H, Lee JP, et al. Causal linkage of tobacco smoking with ageing: mendelian randomization analysis towards telomere attrition and sarcopenia. J cachexia Sarcopenia Muscle. 2023;14(2):955–63.
pubmed: 36696951
pmcid: 10067476
doi: 10.1002/jcsm.13174
Zagkos L, Dib MJ, Pinto R, Gill D, Koskeridis F, Drenos F, Markozannes G, Elliott P, Zuber V, Tsilidis K, et al. Associations of genetically predicted fatty acid levels across the phenome: a mendelian randomisation study. PLoS Med. 2022;19(12): e1004141.
pubmed: 36580444
pmcid: 9799317
doi: 10.1371/journal.pmed.1004141
Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18.
pubmed: 36653562
pmcid: 9849126
doi: 10.1038/s41586-022-05473-8
Codd V, Denniff M, Swinfield C, Warner SC, Papakonstantinou M, Sheth S, Nanus DE, Budgeon CA, Musicha C, Bountziouka V, et al. Measurement and initial characterization of leukocyte telomere length in 474,074 participants in UK Biobank. Nat Aging. 2022;2(2):170–9.
pubmed: 37117760
doi: 10.1038/s43587-021-00166-9
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.
pubmed: 25826379
pmcid: 4380465
doi: 10.1371/journal.pmed.1001779
Kalra G, Milon B, Casella AM, Herb BR, Humphries E, Song Y, Rose KP, Hertzano R, Ament SA. Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. PLoS Genet. 2020;16(9): e1009025.
pubmed: 32986727
pmcid: 7544108
doi: 10.1371/journal.pgen.1009025
Pei YF, Liu YZ, Yang XL, Zhang H, Feng GJ, Wei XT, Zhang L. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biology. 2020;3(1):608.
doi: 10.1038/s42003-020-01334-0
Larsson SC, Woolf B, Gill D. Plasma caffeine levels and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomization study. Nutrients. 2022;14(9):1697.
pubmed: 35565667
pmcid: 9102212
doi: 10.3390/nu14091697
Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, Butterworth AS, Staley JR. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinf (Oxford England). 2019;35(22):4851–3.
Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.
pubmed: 20813862
doi: 10.1093/ije/dyq151
Burgess S, Thompson SG. Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation. In: 2015.
Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.
pubmed: 24159078
doi: 10.1093/ije/dyt179
Flatby HM, Ravi A, Damås JK, Solligård E, Rogne T. Circulating levels of micronutrients and risk of infections: a mendelian randomization study. BMC Med. 2023;21(1):84.
pubmed: 36882828
pmcid: 9993583
doi: 10.1186/s12916-023-02780-3
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.
pubmed: 24114802
pmcid: 4377079
doi: 10.1002/gepi.21758
Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–40.
doi: 10.1002/sim.6522
Burgess S, Thompson SG. Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.
pubmed: 28527048
pmcid: 5506233
doi: 10.1007/s10654-017-0255-x
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.
pubmed: 26050253
pmcid: 4469799
doi: 10.1093/ije/dyv080
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.
pubmed: 27061298
pmcid: 4849733
doi: 10.1002/gepi.21965
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.
pubmed: 29040600
pmcid: 5837715
doi: 10.1093/ije/dyx102
Slob EAW, Burgess S. A comparison of robust mendelian randomization methods using summary data. Genet Epidemiol. 2020;44(4):313–29.
pubmed: 32249995
pmcid: 7317850
doi: 10.1002/gepi.22295
Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45(6):1866–86.
pubmed: 28108528
Wang S, Zhu H, Pan L, Zhang M, Wan X, Xu H, Hua R, Zhu M, Gao P. Systemic inflammatory regulators and risk of acute-on-chronic liver failure: a bidirectional mendelian-randomization study. Front cell Dev Biology. 2023;11:1125233.
doi: 10.3389/fcell.2023.1125233
Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880–906.
pubmed: 26661904
doi: 10.1002/sim.6835
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical Res ed). 2003;327(7414):557–60.
doi: 10.1136/bmj.327.7414.557
Yeung CHC, Schooling CM. Systemic inflammatory regulators and risk of Alzheimer’s disease: a bidirectional mendelian-randomization study. Int J Epidemiol. 2020;50(3):829–40.
doi: 10.1093/ije/dyaa241
Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.
pubmed: 29686387
pmcid: 6083837
doi: 10.1038/s41588-018-0099-7
Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample mendelian randomisation study. BMC Med. 2023;21(1):66.
pubmed: 36810112
pmcid: 9945666
doi: 10.1186/s12916-023-02761-6
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of aging. Cell. 2013;153(6):1194–217.
pubmed: 23746838
pmcid: 3836174
doi: 10.1016/j.cell.2013.05.039
Graves’ disease. Nat Reviews Disease Primers. 2020;6(1):53.
doi: 10.1038/s41572-020-0195-8
van den Beld AW, Visser TJ, Feelders RA, Grobbee DE, Lamberts SWJ. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men. J Clin Endocrinol Metabolism. 2005;90(12):6403–9.
doi: 10.1210/jc.2005-0872
Rozing MP, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Frölich M, de Craen AJM, Westendorp RGJ, van Heemst D. Familial longevity is associated with decreased thyroid function. J Clin Endocrinol Metabolism. 2010;95(11):4979–84.
doi: 10.1210/jc.2010-0875
Tedone E, Arosio B, Gussago C, Casati M, Ferri E, Ogliari G, Ronchetti F, Porta A, Massariello F, Nicolini P, et al. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians’ offspring. Exp Gerontol. 2014;58:90–5.
pubmed: 24975295
doi: 10.1016/j.exger.2014.06.018
Zambrano A, García-Carpizo V, Gallardo ME, Villamuera R, Gómez-Ferrería MA, Pascual A, Buisine N, Sachs LM, Garesse R, Aranda A. The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol. 2014;204(1):129–46.
pubmed: 24395638
pmcid: 3882795
doi: 10.1083/jcb.201305084
Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet (London England). 2005;365(9459):599–609.
pubmed: 15708105
doi: 10.1016/S0140-6736(05)70803-5
Nowroozzadeh MH, Thornton S, Watson A, Syed ZA, Razeghinejad R. Ocular manifestations of endocrine disorders. Clin Experimental Optometry. 2022;105(2):105–16.
doi: 10.1080/08164622.2021.1986354
Bowl MR, Dawson SJ. Age-related hearing loss. Cold Spring Harb Perspect Med. 2019;9(8):a033217.
pubmed: 30291149
pmcid: 6671929
doi: 10.1101/cshperspect.a033217
Winter H, Braig C, Zimmermann U, Geisler HS, Fränzer JT, Weber T, Ley M, Engel J, Knirsch M, Bauer K, et al. Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. J Cell Sci. 2006;119(Pt 14):2975–84.
pubmed: 16803873
doi: 10.1242/jcs.03013
Weber T, Zimmermann U, Winter H, Mack A, Köpschall I, Rohbock K, Zenner HP, Knipper M. Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proc Natl Acad Sci USA. 2002;99(5):2901–6.
pubmed: 11867734
pmcid: 122445
doi: 10.1073/pnas.052609899
Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993;14(3):348–99.
pubmed: 8319599
Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol. 2017;79:517–39.
pubmed: 27959617
doi: 10.1146/annurev-physiol-022516-034314
Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65.
pubmed: 22878278
doi: 10.1164/rccm.201204-0596PP
Klein I, Ojamaa K. Thyroid (neuro)myopathy. Lancet (London England). 2000;356(9230):614.
pubmed: 10968432
doi: 10.1016/S0140-6736(00)02601-5
Siafakas NM, Milona I, Salesiotou V, Filaditaki V, Tzanakis N, Bouros D. Respiratory muscle strength in hyperthyroidism before and after treatment. Am Rev Respir Dis. 1992;146(4):1025–9.
pubmed: 1416391
doi: 10.1164/ajrccm/146.4.1025
Bernardes SS, Guarnier FA, Marinello PC, Armani A, Simão ANC, Cecchini R, Cecchini AL. Reactive oxygen species play a role in muscle wasting during thyrotoxicosis. Cell Tissue Res. 2014;357(3):803–14.
pubmed: 24842047
doi: 10.1007/s00441-014-1881-1