Causal linkage of Graves' disease with aging: Mendelian randomization analysis of telomere length and age-related phenotypes.


Journal

BMC geriatrics
ISSN: 1471-2318
Titre abrégé: BMC Geriatr
Pays: England
ID NLM: 100968548

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 11 10 2023
accepted: 13 09 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Aging is an irreversible progressive decline in physical function. Graves' disease (GD) is a common cause of hyperthyroidism and is characterized by elevated levels of the thyroid hormone (TH). High TH levels are associated with aging and a shortened lifespan. The causal relationship between GD and aging has yet to be investigated. We used genome-wide association study (GWAS) datasets and Mendelian randomization (MR) analysis to explore the causal link between GD and aging. To assess the statistical power of instrumental variables (IVs), F-statistics and R F-statistics of the five IVs were greater than 10, and the R GD accelerates the occurrence of age-related phenotypes including TL, senile cataracts, age-related hearing impairment, COPD, and sarcopenia. In contrast, there are no causal linkages between GD and facial aging, age-related macular degeneration, or Alzheimer's disease. Further experimental studies could be conducted to elucidate the mechanisms by which GD facilitates aging, which could help slow down the progress of aging.

Sections du résumé

BACKGROUND BACKGROUND
Aging is an irreversible progressive decline in physical function. Graves' disease (GD) is a common cause of hyperthyroidism and is characterized by elevated levels of the thyroid hormone (TH). High TH levels are associated with aging and a shortened lifespan. The causal relationship between GD and aging has yet to be investigated.
METHODS METHODS
We used genome-wide association study (GWAS) datasets and Mendelian randomization (MR) analysis to explore the causal link between GD and aging. To assess the statistical power of instrumental variables (IVs), F-statistics and R
RESULTS RESULTS
F-statistics of the five IVs were greater than 10, and the R
CONCLUSIONS CONCLUSIONS
GD accelerates the occurrence of age-related phenotypes including TL, senile cataracts, age-related hearing impairment, COPD, and sarcopenia. In contrast, there are no causal linkages between GD and facial aging, age-related macular degeneration, or Alzheimer's disease. Further experimental studies could be conducted to elucidate the mechanisms by which GD facilitates aging, which could help slow down the progress of aging.

Identifiants

pubmed: 39482583
doi: 10.1186/s12877-024-05379-2
pii: 10.1186/s12877-024-05379-2
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

901

Subventions

Organisme : National Key Research and Development Program of China
ID : 2018YFE0207300
Organisme : Shengjing Hospital of China Medical University
ID : 345 Talent Project

Informations de copyright

© 2024. The Author(s).

Références

Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424–35.
pubmed: 26646499 pmcid: 4748967 doi: 10.1038/nm.4000
Feng Q, Xia W, Dai G, Lv J, Yang J, Liu D, Zhang G. The aging features of thyrotoxicosis mice: malnutrition, immunosenescence and lipotoxicity. Front Immunol. 2022;13: 864929.
pubmed: 35720307 pmcid: 9201349 doi: 10.3389/fimmu.2022.864929
Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev. 2010;31(2):139–70.
pubmed: 20051527 pmcid: 2852208 doi: 10.1210/er.2009-0007
Dittner C, Lindsund E, Cannon B, Nedergaard J. At thermoneutrality, acute thyroxine-induced thermogenesis and pyrexia are independent of UCP1. Mol Metabolism. 2019;25:20–34.
doi: 10.1016/j.molmet.2019.05.005
Gauthier BR, Sola-García A, Cáliz-Molina M, Lorenzo PI, Cobo-Vuilleumier N, Capilla-González V, Martin-Montalvo A. Thyroid hormones in diabetes, cancer, and aging. Aging Cell. 2020;19(11):e13260.
pubmed: 33048427 pmcid: 7681062 doi: 10.1111/acel.13260
Henning Y, Vole C, Begall S, Bens M, Broecker-Preuss M, Sahm A, Szafranski K, Burda H, Dammann P. Unusual ratio between free thyroxine and free triiodothyronine in a long-lived mole-rat species with bimodal ageing. PLoS One. 2014;9(11): e113698.
pubmed: 25409169 pmcid: 4237498 doi: 10.1371/journal.pone.0113698
Smith TJ, Hegedüs L. Graves’ disease. N Engl J Med. 2016;375(16):1552–65.
pubmed: 27797318 doi: 10.1056/NEJMra1510030
Bartalena L. Diagnosis and management of Graves disease: a global overview. Nat Reviews Endocrinol. 2013;9(12):724–34.
doi: 10.1038/nrendo.2013.193
Nyström HF, Jansson S, Berg G. Incidence rate and clinical features of hyperthyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003–2005. Clin Endocrinol. 2013;78(5):768–76.
doi: 10.1111/cen.12060
Antonelli A, Ferrari SM, Ragusa F, Elia G, Paparo SR, Ruffilli I, Patrizio A, Giusti C, Gonnella D, Cristaudo A, et al. Graves’ disease: epidemiology, genetic and environmental risk factors and viruses. Best Pract Res Clin Endocrinol Metab. 2020;34(1): 101387.
pubmed: 32107168 doi: 10.1016/j.beem.2020.101387
Radziszewski M, Kuś A, Bednarczuk T. Genotype-phenotype correlations in Graves’ disease. Best Pract Res Clin Endocrinol Metab. 2023;37(2):101745.
pubmed: 36828713 doi: 10.1016/j.beem.2023.101745
Burch HB, Cooper DS. Management of Graves disease: a review. JAMA. 2015;314(23):2544–54.
pubmed: 26670972 doi: 10.1001/jama.2015.16535
Bahn Chair RS, Burch HB, Cooper DS, Garber JR, Greenlee MC, Klein I, Laurberg P, McDougall IR, Montori VM, Rivkees SA, et al. Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists. Thyroid: Official J Am Thyroid Association. 2011;21(6):593–646.
doi: 10.1089/thy.2010.0417
Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89-98.
pubmed: 25064373 pmcid: 4170722 doi: 10.1093/hmg/ddu328
Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27(8):1133–63.
pubmed: 17886233 doi: 10.1002/sim.3034
Fasching CL. Telomere length measurement as a clinical biomarker of aging and disease. Crit Rev Clin Lab Sci. 2018;55(7):443–65.
pubmed: 30265166 doi: 10.1080/10408363.2018.1504274
Aubert G, Lansdorp PM. Telomeres and aging. Physiol Rev. 2008;88(2):557–79.
pubmed: 18391173 doi: 10.1152/physrev.00026.2007
Park S, Kim SG, Lee S, Kim Y, Cho S, Kim K, Kim YC, Han SS, Lee H, Lee JP, et al. Causal linkage of tobacco smoking with ageing: mendelian randomization analysis towards telomere attrition and sarcopenia. J cachexia Sarcopenia Muscle. 2023;14(2):955–63.
pubmed: 36696951 pmcid: 10067476 doi: 10.1002/jcsm.13174
Zagkos L, Dib MJ, Pinto R, Gill D, Koskeridis F, Drenos F, Markozannes G, Elliott P, Zuber V, Tsilidis K, et al. Associations of genetically predicted fatty acid levels across the phenome: a mendelian randomisation study. PLoS Med. 2022;19(12): e1004141.
pubmed: 36580444 pmcid: 9799317 doi: 10.1371/journal.pmed.1004141
Kurki MI, Karjalainen J, Palta P, Sipilä TP, Kristiansson K, Donner KM, Reeve MP, Laivuori H, Aavikko M, Kaunisto MA, et al. FinnGen provides genetic insights from a well-phenotyped isolated population. Nature. 2023;613(7944):508–18.
pubmed: 36653562 pmcid: 9849126 doi: 10.1038/s41586-022-05473-8
Codd V, Denniff M, Swinfield C, Warner SC, Papakonstantinou M, Sheth S, Nanus DE, Budgeon CA, Musicha C, Bountziouka V, et al. Measurement and initial characterization of leukocyte telomere length in 474,074 participants in UK Biobank. Nat Aging. 2022;2(2):170–9.
pubmed: 37117760 doi: 10.1038/s43587-021-00166-9
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12(3):e1001779.
pubmed: 25826379 pmcid: 4380465 doi: 10.1371/journal.pmed.1001779
Kalra G, Milon B, Casella AM, Herb BR, Humphries E, Song Y, Rose KP, Hertzano R, Ament SA. Biological insights from multi-omic analysis of 31 genomic risk loci for adult hearing difficulty. PLoS Genet. 2020;16(9): e1009025.
pubmed: 32986727 pmcid: 7544108 doi: 10.1371/journal.pgen.1009025
Pei YF, Liu YZ, Yang XL, Zhang H, Feng GJ, Wei XT, Zhang L. The genetic architecture of appendicular lean mass characterized by association analysis in the UK Biobank study. Commun Biology. 2020;3(1):608.
doi: 10.1038/s42003-020-01334-0
Larsson SC, Woolf B, Gill D. Plasma caffeine levels and risk of Alzheimer’s disease and Parkinson’s disease: Mendelian randomization study. Nutrients. 2022;14(9):1697.
pubmed: 35565667 pmcid: 9102212 doi: 10.3390/nu14091697
Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, Butterworth AS, Staley JR. PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations. Bioinf (Oxford England). 2019;35(22):4851–3.
Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength requirements for mendelian randomization studies using multiple genetic variants. Int J Epidemiol. 2011;40(3):740–52.
pubmed: 20813862 doi: 10.1093/ije/dyq151
Burgess S, Thompson SG. Mendelian Randomization: Methods for Using Genetic Variants in Causal Estimation. In: 2015.
Brion MJ, Shakhbazov K, Visscher PM. Calculating statistical power in mendelian randomization studies. Int J Epidemiol. 2013;42(5):1497–501.
pubmed: 24159078 doi: 10.1093/ije/dyt179
Flatby HM, Ravi A, Damås JK, Solligård E, Rogne T. Circulating levels of micronutrients and risk of infections: a mendelian randomization study. BMC Med. 2023;21(1):84.
pubmed: 36882828 pmcid: 9993583 doi: 10.1186/s12916-023-02780-3
Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65.
pubmed: 24114802 pmcid: 4377079 doi: 10.1002/gepi.21758
Greco MF, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34(21):2926–40.
doi: 10.1002/sim.6522
Burgess S, Thompson SG. Interpreting findings from mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.
pubmed: 28527048 pmcid: 5506233 doi: 10.1007/s10654-017-0255-x
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.
pubmed: 26050253 pmcid: 4469799 doi: 10.1093/ije/dyv080
Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some Invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.
pubmed: 27061298 pmcid: 4849733 doi: 10.1002/gepi.21965
Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary data mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol. 2017;46(6):1985–98.
pubmed: 29040600 pmcid: 5837715 doi: 10.1093/ije/dyx102
Slob EAW, Burgess S. A comparison of robust mendelian randomization methods using summary data. Genet Epidemiol. 2020;44(4):313–29.
pubmed: 32249995 pmcid: 7317850 doi: 10.1002/gepi.22295
Lawlor DA, Tilling K, Davey Smith G. Triangulation in aetiological epidemiology. Int J Epidemiol. 2016;45(6):1866–86.
pubmed: 28108528
Wang S, Zhu H, Pan L, Zhang M, Wan X, Xu H, Hua R, Zhu M, Gao P. Systemic inflammatory regulators and risk of acute-on-chronic liver failure: a bidirectional mendelian-randomization study. Front cell Dev Biology. 2023;11:1125233.
doi: 10.3389/fcell.2023.1125233
Burgess S, Dudbridge F, Thompson SG. Combining information on multiple instrumental variables in mendelian randomization: comparison of allele score and summarized data methods. Stat Med. 2016;35(11):1880–906.
pubmed: 26661904 doi: 10.1002/sim.6835
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical Res ed). 2003;327(7414):557–60.
doi: 10.1136/bmj.327.7414.557
Yeung CHC, Schooling CM. Systemic inflammatory regulators and risk of Alzheimer’s disease: a bidirectional mendelian-randomization study. Int J Epidemiol. 2020;50(3):829–40.
doi: 10.1093/ije/dyaa241
Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from mendelian randomization between complex traits and diseases. Nat Genet. 2018;50(5):693–8.
pubmed: 29686387 pmcid: 6083837 doi: 10.1038/s41588-018-0099-7
Long Y, Tang L, Zhou Y, Zhao S, Zhu H. Causal relationship between gut microbiota and cancers: a two-sample mendelian randomisation study. BMC Med. 2023;21(1):66.
pubmed: 36810112 pmcid: 9945666 doi: 10.1186/s12916-023-02761-6
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of aging. Cell. 2013;153(6):1194–217.
pubmed: 23746838 pmcid: 3836174 doi: 10.1016/j.cell.2013.05.039
Graves’ disease. Nat Reviews Disease Primers. 2020;6(1):53.
doi: 10.1038/s41572-020-0195-8
van den Beld AW, Visser TJ, Feelders RA, Grobbee DE, Lamberts SWJ. Thyroid hormone concentrations, disease, physical function, and mortality in elderly men. J Clin Endocrinol Metabolism. 2005;90(12):6403–9.
doi: 10.1210/jc.2005-0872
Rozing MP, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Frölich M, de Craen AJM, Westendorp RGJ, van Heemst D. Familial longevity is associated with decreased thyroid function. J Clin Endocrinol Metabolism. 2010;95(11):4979–84.
doi: 10.1210/jc.2010-0875
Tedone E, Arosio B, Gussago C, Casati M, Ferri E, Ogliari G, Ronchetti F, Porta A, Massariello F, Nicolini P, et al. Leukocyte telomere length and prevalence of age-related diseases in semisupercentenarians, centenarians and centenarians’ offspring. Exp Gerontol. 2014;58:90–5.
pubmed: 24975295 doi: 10.1016/j.exger.2014.06.018
Zambrano A, García-Carpizo V, Gallardo ME, Villamuera R, Gómez-Ferrería MA, Pascual A, Buisine N, Sachs LM, Garesse R, Aranda A. The thyroid hormone receptor β induces DNA damage and premature senescence. J Cell Biol. 2014;204(1):129–46.
pubmed: 24395638 pmcid: 3882795 doi: 10.1083/jcb.201305084
Asbell PA, Dualan I, Mindel J, Brocks D, Ahmad M, Epstein S. Age-related cataract. Lancet (London England). 2005;365(9459):599–609.
pubmed: 15708105 doi: 10.1016/S0140-6736(05)70803-5
Nowroozzadeh MH, Thornton S, Watson A, Syed ZA, Razeghinejad R. Ocular manifestations of endocrine disorders. Clin Experimental Optometry. 2022;105(2):105–16.
doi: 10.1080/08164622.2021.1986354
Bowl MR, Dawson SJ. Age-related hearing loss. Cold Spring Harb Perspect Med. 2019;9(8):a033217.
pubmed: 30291149 pmcid: 6671929 doi: 10.1101/cshperspect.a033217
Winter H, Braig C, Zimmermann U, Geisler HS, Fränzer JT, Weber T, Ley M, Engel J, Knirsch M, Bauer K, et al. Thyroid hormone receptors TRalpha1 and TRbeta differentially regulate gene expression of Kcnq4 and prestin during final differentiation of outer hair cells. J Cell Sci. 2006;119(Pt 14):2975–84.
pubmed: 16803873 doi: 10.1242/jcs.03013
Weber T, Zimmermann U, Winter H, Mack A, Köpschall I, Rohbock K, Zenner HP, Knipper M. Thyroid hormone is a critical determinant for the regulation of the cochlear motor protein prestin. Proc Natl Acad Sci USA. 2002;99(5):2901–6.
pubmed: 11867734 pmcid: 122445 doi: 10.1073/pnas.052609899
Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993;14(3):348–99.
pubmed: 8319599
Barnes PJ. Senescence in COPD and its comorbidities. Annu Rev Physiol. 2017;79:517–39.
pubmed: 27959617 doi: 10.1146/annurev-physiol-022516-034314
Vestbo J, Hurd SS, Agustí AG, Jones PW, Vogelmeier C, Anzueto A, Barnes PJ, Fabbri LM, Martinez FJ, Nishimura M, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2013;187(4):347–65.
pubmed: 22878278 doi: 10.1164/rccm.201204-0596PP
Klein I, Ojamaa K. Thyroid (neuro)myopathy. Lancet (London England). 2000;356(9230):614.
pubmed: 10968432 doi: 10.1016/S0140-6736(00)02601-5
Siafakas NM, Milona I, Salesiotou V, Filaditaki V, Tzanakis N, Bouros D. Respiratory muscle strength in hyperthyroidism before and after treatment. Am Rev Respir Dis. 1992;146(4):1025–9.
pubmed: 1416391 doi: 10.1164/ajrccm/146.4.1025
Bernardes SS, Guarnier FA, Marinello PC, Armani A, Simão ANC, Cecchini R, Cecchini AL. Reactive oxygen species play a role in muscle wasting during thyrotoxicosis. Cell Tissue Res. 2014;357(3):803–14.
pubmed: 24842047 doi: 10.1007/s00441-014-1881-1

Auteurs

Jingwen Hu (J)

Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.

Jin Zhang (J)

Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.

Yingshu Liu (Y)

Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.

Jiahui Qin (J)

Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.

Haixia Bai (H)

Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China.

Xiaosong Qin (X)

Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China. qinxs@sj-hospital.org.
Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, 110004, China. qinxs@sj-hospital.org.
, No.36 Sanhao Street, Heping District Shenyang 110004, Liaoning Zip, China. qinxs@sj-hospital.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH