Patient iPSC-derived neural progenitor cells display aberrant cell cycle control, p53, and DNA damage response protein expression in schizophrenia.


Journal

BMC psychiatry
ISSN: 1471-244X
Titre abrégé: BMC Psychiatry
Pays: England
ID NLM: 100968559

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 05 07 2024
accepted: 30 09 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Schizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited. Here, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach. SCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ. Through targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.

Sections du résumé

BACKGROUND BACKGROUND
Schizophrenia (SCZ) is a severe psychiatric disorder associated with alterations in early brain development. Details of underlying pathomechanisms remain unclear, despite genome and transcriptome studies providing evidence for aberrant cellular phenotypes and pathway deregulation in developing neuronal cells. However, mechanistic insight at the protein level is limited.
METHODS METHODS
Here, we investigate SCZ-specific protein expression signatures of neuronal progenitor cells (NPC) derived from patient iPSC in comparison to healthy controls using high-throughput Western Blotting (DigiWest) in a targeted proteomics approach.
RESULTS RESULTS
SCZ neural progenitors displayed altered expression and phosphorylation patterns related to Wnt and MAPK signaling, protein synthesis, cell cycle regulation and DNA damage response. Consistent with impaired cell cycle control, SCZ NPCs also showed accumulation in the G2/M cell phase and reduced differentiation capacity. Furthermore, we correlated these findings with elevated p53 expression and phosphorylation levels in SCZ patient-derived cells, indicating a potential implication of p53 in hampering cell cycle progression and efficient neurodevelopment in SCZ.
CONCLUSIONS CONCLUSIONS
Through targeted proteomics we demonstrate that SCZ NPC display coherent mechanistic alterations in regulation of DNA damage response, cell cycle control and p53 expression. These findings highlight the suitability of iPSC-based approaches for modeling psychiatric disorders and contribute to a better understanding of the disease mechanisms underlying SCZ, particularly during early development.

Identifiants

pubmed: 39482642
doi: 10.1186/s12888-024-06127-x
pii: 10.1186/s12888-024-06127-x
doi:

Substances chimiques

Tumor Suppressor Protein p53 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

757

Subventions

Organisme : State Ministry of Baden-Württemberg for Economic Affairs, Labour and Tourism
ID : AZ 35-4223.10/8
Organisme : State Ministry of Baden-Württemberg for Economic Affairs, Labour and Tourism
ID : AZ 35-4223.10/8
Organisme : State Ministry of Baden-Württemberg for Economic Affairs, Labour and Tourism
ID : AZ 35-4223.10/8
Organisme : State Ministry of Baden-Württemberg for Economic Affairs, Labour and Tourism
ID : AZ 35-4223.10/8
Organisme : State Ministry of Baden-Württemberg for Economic Affairs, Labour and Tourism
ID : AZ 35-4223.10/8

Informations de copyright

© 2024. The Author(s).

Références

Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, et al. Definition and description of schizophrenia in the DSM-5. Schizophr Res. 2013;150(1):3–10.
pubmed: 23800613 doi: 10.1016/j.schres.2013.05.028
Carbon M, Correll CU. Thinking and acting beyond the positive: the role of the cognitive and negative symptoms in schizophrenia. CNS Spectr. 2014;19(Suppl 1):38–52 (quiz 35-7, 53).
pubmed: 25403863
Stepnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules. 2018;23(8):2087.
pubmed: 30127324 pmcid: 6222385 doi: 10.3390/molecules23082087
Singh T, Poterba T, Curtis D, Akil H, Al Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. 2022;604(7906):509–16.
pubmed: 35396579 pmcid: 9805802 doi: 10.1038/s41586-022-04556-w
Trubetskoy V, Pardinas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 2022;604(7906):502–8.
pubmed: 35396580 pmcid: 9392466 doi: 10.1038/s41586-022-04434-5
English JA, Fan Y, Focking M, Lopez LM, Hryniewiecka M, Wynne K, et al. Reduced protein synthesis in schizophrenia patient-derived olfactory cells. Transl Psychiatry. 2015;5(10):e663.
pubmed: 26485547 pmcid: 4930119 doi: 10.1038/tp.2015.119
Rodrigues JE, Martinho A, Santa C, Madeira N, Coroa M, Santos V, et al. Systematic Review and Meta-Analysis of Mass Spectrometry Proteomics Applied to Human Peripheral Fluids to Assess Potential Biomarkers of Schizophrenia. Int J Mol Sci. 2022;23(9):4917.
pubmed: 35563307 pmcid: 9105255 doi: 10.3390/ijms23094917
Topol A, English JA, Flaherty E, Rajarajan P, Hartley BJ, Gupta S, et al. Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Transl Psychiatry. 2015;5(10):e662.
pubmed: 26485546 pmcid: 4930118 doi: 10.1038/tp.2015.118
Brennand K, Savas JN, Kim Y, Tran N, Simone A, Hashimoto-Torii K, et al. Phenotypic differences in hiPSC NPCs derived from patients with schizophrenia. Mol Psychiatry. 2015;20(3):361–8.
pubmed: 24686136 doi: 10.1038/mp.2014.22
Maschietto M, Tahira AC, Puga R, Lima L, Mariani D, Paulsen Bda S, et al. Co-expression network of neural-differentiation genes shows specific pattern in schizophrenia. BMC Med Genomics. 2015;8:23.
pubmed: 25981335 pmcid: 4493810 doi: 10.1186/s12920-015-0098-9
Nascimento JM, Saia-Cereda VM, Zuccoli GS, Reis-de-Oliveira G, Carregari VC, Smith BJ, et al. Proteomic signatures of schizophrenia-sourced iPSC-derived neural cells and brain organoids are similar to patients’ postmortem brains. Cell Biosci. 2022;12(1):189.
pubmed: 36451159 pmcid: 9714120 doi: 10.1186/s13578-022-00928-x
Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet. 2004;36(2):131–7.
pubmed: 14745448 doi: 10.1038/ng1296
Freyberg Z, Ferrando SJ, Javitch JA. Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry. 2010;167(4):388–96.
pubmed: 19917593 doi: 10.1176/appi.ajp.2009.08121873
Hoseth EZ, Krull F, Dieset I, Morch RH, Hope S, Gardsjord ES, et al. Exploring the Wnt signaling pathway in schizophrenia and bipolar disorder. Transl Psychiatry. 2018;8(1):55.
pubmed: 29507296 pmcid: 5838215 doi: 10.1038/s41398-018-0102-1
Peng Y, Xu Y, Cui D. Wnt signaling pathway in schizophrenia. CNS Neurol Disord Drug Targets. 2014;13(5):755–64.
pubmed: 24365185 doi: 10.2174/1871527312666131223113521
Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473(7346):221–5.
pubmed: 21490598 pmcid: 3392969 doi: 10.1038/nature09915
Funk AJ, McCullumsmith RE, Haroutunian V, Meador-Woodruff JH. Abnormal activity of the MAPK- and cAMP-associated signaling pathways in frontal cortical areas in postmortem brain in schizophrenia. Neuropsychopharmacology. 2012;37(4):896–905.
pubmed: 22048463 doi: 10.1038/npp.2011.267
Kyosseva SV, Elbein AD, Griffin WS, Mrak RE, Lyon M, Karson CN. Mitogen-activated protein kinases in schizophrenia. Biol Psychiatry. 1999;46(5):689–96.
pubmed: 10472421 doi: 10.1016/S0006-3223(99)00104-3
Yuan P, Zhou R, Wang Y, Li X, Li J, Chen G, et al. Altered levels of extracellular signal-regulated kinase signaling proteins in postmortem frontal cortex of individuals with mood disorders and schizophrenia. J Affect Disord. 2010;124(1–2):164–9.
pubmed: 19913919 doi: 10.1016/j.jad.2009.10.017
Treindl F, Ruprecht B, Beiter Y, Schultz S, Dottinger A, Staebler A, et al. A bead-based western for high-throughput cellular signal transduction analyses. Nat Commun. 2016;7:12852.
pubmed: 27659302 pmcid: 5036152 doi: 10.1038/ncomms12852
Breitmeyer R, Vogel S, Heider J, Hartmann SM, Wust R, Keller AL, et al. Regulation of synaptic connectivity in schizophrenia spectrum by mutual neuron-microglia interaction. Commun Biol. 2023;6(1):472.
pubmed: 37117634 pmcid: 10147621 doi: 10.1038/s42003-023-04852-9
Chou FH, Tsai KY, Su CY, Lee CC. The incidence and relative risk factors for developing cancer among patients with schizophrenia: a nine-year follow-up study. Schizophr Res. 2011;129(2–3):97–103.
pubmed: 21458957 doi: 10.1016/j.schres.2011.02.018
Notaras M, Lodhi A, Fang H, Greening D, Colak D. The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors. Transl Psychiatry. 2021;11(1):541.
pubmed: 34667143 pmcid: 8526592 doi: 10.1038/s41398-021-01664-5
Mulligan KA, Cheyette BN. Neurodevelopmental Perspectives on Wnt Signaling in Psychiatry. Mol Neuropsychiatry. 2017;2(4):219–46.
pubmed: 28277568 pmcid: 5318929
Sahu MR, Mondal AC. Neuronal Hippo signaling: From development to diseases. Dev Neurobiol. 2021;81(2):92–109.
pubmed: 33275833 doi: 10.1002/dneu.22796
Gulino A, Di Marcotullio L, Ferretti E, De Smaele E, Screpanti I. Hedgehog signaling pathway in neural development and disease. Psychoneuroendocrinology. 2007;32(Suppl 1):S52–6.
pubmed: 17619088 doi: 10.1016/j.psyneuen.2007.03.017
Hiew LF, Poon CH, You HZ, Lim LW. TGF-beta/Smad Signalling in Neurogenesis: Implications for Neuropsychiatric Diseases. Cells. 2021;10(6):1382.
pubmed: 34205102 pmcid: 8226492 doi: 10.3390/cells10061382
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Kanehisa M, Sato Y. KEGG Mapper for inferring cellular functions from protein sequences. Protein Sci. 2020;29(1):28–35.
pubmed: 31423653 doi: 10.1002/pro.3711
Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003;34(2):374–8.
pubmed: 12613259 doi: 10.2144/03342mt01
Fox MH. A model for the computer analysis of synchronous DNA distributions obtained by flow cytometry. Cytometry. 1980;1(1):71–7.
pubmed: 7023881 doi: 10.1002/cyto.990010114
Rust R, Weber RZ, Generali M, Kehl D, Bodenmann C, Uhr D, et al. Xeno-free induced pluripotent stem cell-derived neural progenitor cells for in vivo applications. J Transl Med. 2022;20(1):421.
pubmed: 36114512 pmcid: 9482172 doi: 10.1186/s12967-022-03610-5
Mulligan KA, Cheyette BNR. Wnt Signaling in Vertebrate Neural Development and Function. J Neuroimmune Pharmacol. 2012;7(4):774–87.
pubmed: 23015196 pmcid: 3518582 doi: 10.1007/s11481-012-9404-x
Yang C, Qi Y, Sun Z. The Role of Sonic Hedgehog Pathway in the Development of the Central Nervous System and Aging-Related Neurodegenerative Diseases. Front Mol Biosci. 2021;8:711710.
pubmed: 34307464 pmcid: 8295685 doi: 10.3389/fmolb.2021.711710
Hardwick LJA, Ali FR, Azzarelli R, Philpott A. Cell cycle regulation of proliferation versus differentiation in the central nervous system. Cell Tissue Res. 2015;359(1):187–200.
pubmed: 24859217 doi: 10.1007/s00441-014-1895-8
Zaveri L, Dhawan J. Cycling to Meet Fate: Connecting Pluripotency to the Cell Cycle. Front Cell Dev Biol. 2018;6:57.
pubmed: 29974052 pmcid: 6020794 doi: 10.3389/fcell.2018.00057
Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E, et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18(10):1067–76.
pubmed: 23732879 doi: 10.1038/mp.2013.67
Toyoshima M, Akamatsu W, Okada Y, Ohnishi T, Balan S, Hisano Y, et al. Analysis of induced pluripotent stem cells carrying 22q11.2 deletion. Transl Psychiatry. 2016;6(11):e934.
pubmed: 27801899 pmcid: 5314118 doi: 10.1038/tp.2016.206
Fu X, Wu S, Li B, Xu Y, Liu J. Functions of p53 in pluripotent stem cells. Protein Cell. 2019;11(1):71–8.
pubmed: 31691903 pmcid: 6949194 doi: 10.1007/s13238-019-00665-x
Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91(3):325–34.
pubmed: 9363941 doi: 10.1016/S0092-8674(00)80416-X
Xiong Y, Zhang Y, Xiong S, Williams-Villalobo AE. A Glance of p53 Functions in Brain Development, Neural Stem Cells, and Brain Cancer. Biology. 2020;9(9):285.
pubmed: 32932978 pmcid: 7564678 doi: 10.3390/biology9090285
Li H, Zhang Z, Li H, Pan X, Wang Y. New Insights into the Roles of p53 in Central Nervous System Diseases. Int J Neuropsychopharmacol. 2023;26(7):465–73.
pubmed: 37338366 pmcid: 10388388 doi: 10.1093/ijnp/pyad030
Zhuo C, Wang D, Zhou C, Chen C, Li J, Tian H, et al. Double-Edged Sword of Tumour Suppressor Genes in Schizophrenia. Front Mol Neurosci. 2019;12:1.
pubmed: 30809121 pmcid: 6379290 doi: 10.3389/fnmol.2019.00001
Ni X, Trakalo J, Valente J, Azevedo MH, Pato MT, Pato CN, et al. Human p53 tumor suppressor gene (TP53) and schizophrenia: case-control and family studies. Neurosci Lett. 2005;388(3):173–8.
pubmed: 16039051 doi: 10.1016/j.neulet.2005.06.050
Ji J, Sundquist K, Ning Y, Kendler KS, Sundquist J, Chen X. Incidence of cancer in patients with schizophrenia and their first-degree relatives: a population-based study in Sweden. Schizophr Bull. 2013;39(3):527–36.
pubmed: 22522642 doi: 10.1093/schbul/sbs065
Mortensen PB. The incidence of cancer in schizophrenic patients. J Epidemiol Community Health. 1989;43(1):43–7.
pubmed: 2592890 pmcid: 1052789 doi: 10.1136/jech.43.1.43
Grunwald LM, Stock R, Haag K, Buckenmaier S, Eberle MC, Wildgruber D, et al. Comparative characterization of human induced pluripotent stem cells (hiPSC) derived from patients with schizophrenia and autism. Transl Psychiatry. 2019;9(1):179.
pubmed: 31358727 pmcid: 6663940 doi: 10.1038/s41398-019-0517-3
Notaras M, Lodhi A, Fang H, Greening D, Colak D. The proteomic architecture of schizophrenia iPSC-derived cerebral organoids reveals alterations in GWAS and neuronal development factors. Transl Psychiatry. 2021;11(1):541.
pubmed: 34667143 pmcid: 8526592 doi: 10.1038/s41398-021-01664-5
Markkanen E, Meyer U, Dianov GL. DNA Damage and Repair in Schizophrenia and Autism: Implications for Cancer Comorbidity and Beyond. Int J Mol Sci. 2016;17(6):856.
pubmed: 27258260 pmcid: 4926390 doi: 10.3390/ijms17060856
Catts VS, Catts SV, Jablensky A, Chandler D, Weickert CS, Lavin MF. Evidence of aberrant DNA damage response signalling but normal rates of DNA repair in dividing lymphoblasts from patients with schizophrenia. World J Biol Psychiatry. 2012;13(2):114–25.
pubmed: 21830993 doi: 10.3109/15622975.2011.565073
Sujitha SP, Kumar DT, Doss CGP, Aavula K, Ramesh R, Lakshmanan S, et al. DNA Repair Gene (XRCC1) Polymorphism (Arg399Gln) Associated with Schizophrenia in South Indian Population: A Genotypic and Molecular Dynamics Study. PLoS ONE. 2016;11(1):e0147348.
pubmed: 26824244 pmcid: 4732819 doi: 10.1371/journal.pone.0147348
Bjorge MD, Hildrestrand GA, Scheffler K, Suganthan R, Rolseth V, Kusnierczyk A, et al. Synergistic Actions of Ogg1 and Mutyh DNA Glycosylases Modulate Anxiety-like Behavior in Mice. Cell Rep. 2015;13(12):2671–8.
pubmed: 26711335 doi: 10.1016/j.celrep.2015.12.001
Shishido R, Kunii Y, Hino M, Izumi R, Nagaoka A, Hayashi H, et al. Evidence for increased DNA damage repair in the postmortem brain of the high stress-response group of schizophrenia. Front Psychiatry. 2023;14:1183696.
pubmed: 37674553 pmcid: 10478254 doi: 10.3389/fpsyt.2023.1183696
Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2023;273(8):1649–64.
pubmed: 37039888 doi: 10.1007/s00406-023-01605-x
da Silveira Paulsen B, de Moraes Maciel R, Galina A, Souza da Silveira M, dos Santos Souza C, Drummond H, et al. Altered oxygen metabolism associated to neurogenesis of induced pluripotent stem cells derived from a schizophrenic patient. Cell Transplant. 2012;21(7):1547–59.
doi: 10.3727/096368911X600957
Cabungcal JH, Counotte DS, Lewis E, Tejeda HA, Piantadosi P, Pollock C, et al. Juvenile antioxidant treatment prevents adult deficits in a developmental model of schizophrenia. Neuron. 2014;83(5):1073–84.
pubmed: 25132466 pmcid: 4418441 doi: 10.1016/j.neuron.2014.07.028
Barnum KJ, O’Connell MJ. Cell Cycle Regulation by Checkpoints. In: Noguchi E, Gadaleta MC, editors. Cell Cycle Control: Mechanisms and Protocols. New York: Springer; 2014. p. 29–40.
doi: 10.1007/978-1-4939-0888-2_2
Chen J. The Cell-Cycle Arrest and Apoptotic Functions of p53 in Tumor Initiation and Progression. Cold Spring Harb Perspect Med. 2016;6(3):a026104.
pubmed: 26931810 pmcid: 4772082 doi: 10.1101/cshperspect.a026104
Stallaert W, Taylor SR, Kedziora KM, Taylor CD, Sobon HK, Young CL, et al. The molecular architecture of cell cycle arrest. Mol Syst Biol. 2022;18(9):e11087.
pubmed: 36161508 pmcid: 9511499 doi: 10.15252/msb.202211087
Fan Y, Abrahamsen G, McGrath JJ, Mackay-Sim A. Altered cell cycle dynamics in schizophrenia. Biol Psychiatry. 2012;71(2):129–35.
pubmed: 22074612 doi: 10.1016/j.biopsych.2011.10.004
Okazaki S, Boku S, Otsuka I, Mouri K, Aoyama S, Shiroiwa K, et al. The cell cycle-related genes as biomarkers for schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2016;70:85–91.
pubmed: 27216283 doi: 10.1016/j.pnpbp.2016.05.005
Cremisi F, Philpott A, Ohnuma S. Cell cycle and cell fate interactions in neural development. Curr Opin Neurobiol. 2003;13(1):26–33.
pubmed: 12593979 doi: 10.1016/S0959-4388(03)00005-9
Beekhuis-Hoekstra SD, Watanabe K, Werme J, de Leeuw CA, Paliukhovich I, Li KW, et al. Systematic assessment of variability in the proteome of iPSC derivatives. Stem Cell Res. 2021;56:102512.
pubmed: 34455241 doi: 10.1016/j.scr.2021.102512
Waldhorn I, Turetsky T, Steiner D, Gil Y, Benyamini H, Gropp M, et al. Modeling sex differences in humans using isogenic induced pluripotent stem cells. Stem Cell Reports. 2022;17(12):2732–44.
pubmed: 36427492 pmcid: 9768579 doi: 10.1016/j.stemcr.2022.10.017
Lo Sardo V, Ferguson W, Erikson GA, Topol EJ, Baldwin KK, Torkamani A. Influence of donor age on induced pluripotent stem cells. Nat Biotechnol. 2017;35(1):69–74.
pubmed: 27941802 doi: 10.1038/nbt.3749

Auteurs

Aaron Stahl (A)

Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany. a.stahl@uni-tuebingen.de.
NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany. a.stahl@uni-tuebingen.de.

Johanna Heider (J)

NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.

Richard Wüst (R)

Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany.
German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany.

Andreas J Fallgatter (AJ)

Department of Psychiatry, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, 72076, Germany.
German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, 72076, Germany.

Katja Schenke-Layland (K)

Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, University of Tübingen, Tübingen, 72076, Germany.
NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.

Hansjürgen Volkmer (H)

NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany.

Markus F Templin (MF)

NMI Natural and Medical Sciences Institute at the University of Tübingen, Markwiesenstraße 55, Reutlingen, 72770, Germany. markus.templin@nmi.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH