Uncovering the therapeutic potential of green pea waste in breast cancer: a multi-target approach utilizing LC-MS/MS metabolomics, molecular networking, and network pharmacology.
Humans
Pisum sativum
/ chemistry
Breast Neoplasms
/ drug therapy
Tandem Mass Spectrometry
Plant Extracts
/ pharmacology
Network Pharmacology
Chromatography, Liquid
Metabolomics
Female
MCF-7 Cells
Cell Line, Tumor
Antineoplastic Agents, Phytogenic
/ pharmacology
Liquid Chromatography-Mass Spectrometry
Breast cancer
Green pea
LC-MS/MS metabolomics
Molecular networking
Network pharmacology
Waste valorization
Journal
BMC complementary medicine and therapies
ISSN: 2662-7671
Titre abrégé: BMC Complement Med Ther
Pays: England
ID NLM: 101761232
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
10
07
2024
accepted:
30
09
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
BACKGROUND PISUM SATIVUM: (PS) is a universal legume plant utilized for both human and animal consumption, particularly its seeds, known as green peas. The processing of PS in food industries and households produces a significant amount of waste that needs to be valorized. In this study, the metabolite profiles of the 70% ethanolic extracts of PS wastes, namely peels (PSP) and a combination of leaves and stems (PSLS), were investigated by liquid chromatography-electrospray ionization-quadrupole time-of-flight tandem mass spectrometry (LC-ESI-QTOF-MS/MS) followed by molecular networking. Different classes of metabolites were identified, being flavonoids and their derivatives, along with phenolic acids, the most abundant categories. Additionally, a comprehensive network pharmacology strategy was applied to elucidate potentially active metabolites, key targets, and the pathways involved in cytotoxic activity against breast cancer. This cytotoxic activity was investigated in MCF-7 and MCF-10a cell lines. Results revealed that PSLS extract exhibited a potent cytotoxic activity with a good selectivity index (IC The uncovered therapeutic potential of PSLS and its metabolite constituents pave the way for an efficient and mindful PS waste valorization, calling for further in-vitro and in-vivo research.
Identifiants
pubmed: 39482666
doi: 10.1186/s12906-024-04669-x
pii: 10.1186/s12906-024-04669-x
doi:
Substances chimiques
Plant Extracts
0
Antineoplastic Agents, Phytogenic
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
379Informations de copyright
© 2024. The Author(s).
Références
Zhang SJ, Hu TT, Chen YY, Wang S, Kang YF. Analysis of the polysaccharide fractions isolated from pea (Pisum sativum L.) at different levels of purification. J Food Biochem. 2020;44:1–11.
Dahl WJ, Foster LM, Tyler RT. Review of the health benefits of peas (Pisum sativum L.). Br J Nutr. 2012;108 SUPPL. 1.
Zilani MNH, Sultana T, Asabur Rahman SM, Anisuzzman M, Islam MA, Shilpi JA, et al. Chemical composition and pharmacological activities of Pisum sativum. BMC Complement Altern Med. 2017;17:1–9.
doi: 10.1186/s12906-017-1699-y
Kumari T, Deka SC. Potential health benefits of garden pea seeds and pods: a review. Legum Sci. 2021;3:1–13.
doi: 10.1002/leg3.82
Dong X, Guo S, Wang H, Wang Z, Gao X. Physicochemical characteristics and FTIR-derived structural parameters of hydrochar produced by hydrothermal carbonisation of pea pod (Pisum sativum Linn.) Waste. Biomass Convers Biorefinery. 2019;9:531–40.
doi: 10.1007/s13399-018-0363-1
Abd El-Galil AA, Negm El-Dein A, Awad HM, Helmy WA. Chemical composition and biological activities of aqueous extracts and their sulfated derivatives of pea peel (Pisum sativum L). Biocatal Agric Biotechnol. 2021;35 June.
Torres-Valenzuela LS, Ballesteros-Gómez A, Rubio S. Green Solvents for the extraction of high added-value compounds from Agri-food Waste. Food Eng Rev. 2020;12:83–100.
doi: 10.1007/s12393-019-09206-y
Ben-Othman S, Jõudu I, Bhat R. Bioactives from agri-food wastes: present insights and future challenges. Molecules. 2020;25:1–32.
doi: 10.3390/molecules25030510
Abdelghffar EA, Obaid WA, Elgamal AM, Daoud R, Sobeh M, El Raey MA. Pea (Pisum sativum) peel extract attenuates DOX-induced oxidative myocardial injury. Biomed Pharmacother. 2021;143:112120.
pubmed: 34649330
doi: 10.1016/j.biopha.2021.112120
Hadrich F, Arbi M, El, Boukhris M, Sayadi S, Cherif S. Valorization of the peel of pea: Pisum sativum by evaluation of its antioxidant and antimicrobial activities. J Oleo Sci. 2014;63:1177–83.
pubmed: 25354878
doi: 10.5650/jos.ess14107
Patra JK, Das G, Shin HS. Facile green biosynthesis of silver nanoparticles using Pisum sativum L. outer peel aqueous extract and its antidiabetic, cytotoxicity, antioxidant, and antibacterial activity. Int J Nanomed. 2019;14:6679–90.
doi: 10.2147/IJN.S212614
Dixit V, Pandey V, Shyam R. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L). J Exp Bot. 2001;52:1101–9.
pubmed: 11432926
doi: 10.1093/jexbot/52.358.1101
Edwards EA, Rawsthorne S, Mullineaux PM. Subcellular distribution of multiple forms of glutathione reductase in leaves of pea (Pisum sativum L). Planta. 1990;180:278–84.
pubmed: 24201957
doi: 10.1007/BF00194008
Chahbani A, Fakhfakh N, Balti MA, Mabrouk M, El-Hatmi H, Zouari N, et al. Microwave drying effects on drying kinetics, bioactive compounds and antioxidant activity of green peas (Pisum sativum L). Food Biosci. 2018;25:32–8.
doi: 10.1016/j.fbio.2018.07.004
Fahim JR, Attia EZ, Kamel MS. The phenolic profile of pea (Pisum sativum): a phytochemical and pharmacological overview. Phytochem Rev. 2019;18:173–98.
doi: 10.1007/s11101-018-9586-9
Fahmi R, Ryland D, Sopiwnyk E, Malcolmson L, Shariati-Ievari S, McElrea A, et al. Effect of Revtech thermal processing on volatile organic compounds and chemical characteristics of split yellow pea (Pisum sativum L.) flour. J Food Sci. 2021;86:4330–53.
pubmed: 34535898
doi: 10.1111/1750-3841.15913
Awad K, Abdel -Nabey AA, Awney H. Phenolic composition and antioxidant activity of some agro-industrial Wastes Khadega. Alexandrian J Food Sci Technol. 2018;15:33–44.
doi: 10.21608/ajfs.2018.28617
Bray F, Ferlay J, Soerjomataram I. Global Cancer statistics 2018: GLOBOCAN estimates of incidence and Mortality Worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68:1–31.
doi: 10.3322/caac.21492
Momenimovahed Z, Salehiniya H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer Targets Ther. 2019;11:151–64.
doi: 10.2147/BCTT.S176070
Khalil MNA, Afifi SM, Eltanany BM, Pont L, Benavente F, El-Sonbaty SM et al. Assessment of the effect of drying on Brassica greens via a multiplex approach based on LC-QTOF-MS/MS, molecular networking, and chemometrics along with their antioxidant and anticancer activities. Food Res Int. 2024;180 February:114053.
Zhang M, Otsuki K, Li W. Molecular networking as a natural products discovery strategy. Acta Mater Med. 2023;2:126–41.
Otify AM, ElBanna SA, Eltanany BM, Pont L, Benavente F, Ibrahim RM. A comprehensive analytical framework integrating liquid chromatography-tandem mass spectrometry metabolomics with chemometrics for metabolite profiling of lettuce varieties and discovery of antibacterial agents. Food Res Int. 2023;172 June:113178.
Ibrahim RM, Eltanany BM, Pont L, Benavente F, Elbanna A, Otify AM. Unveiling the functional components and antivirulence activity of mustard leaves using an LC-MS / MS, molecular networking, and multivariate data analysis integrated approach. Food Res Int. 2023;168:112742.
pubmed: 37120197
doi: 10.1016/j.foodres.2023.112742
Ibrahim RM, Fayez S, Eltanany BM, Abu-Elghait M, El-Demerdash A, Badawy MSEM, et al. Agro-byproduct valorization of radish and turnip leaves and roots as new sources of antibacterial and antivirulence agents through metabolomics and molecular networking. Sci Hortic (Amsterdam). 2024;328:112924.
doi: 10.1016/j.scienta.2024.112924
Yuan H, Ma Q, Cui H, Liu G, Zhao X, Li W, et al. How can synergism of traditional medicines benefit from network pharmacology? Molecules. 2017;22:1–19.
doi: 10.3390/molecules22071135
Khalil AM, Sabry OM, El-Askary HI, El Zalabani SM, Eltanany BM, Pont L, et al. Identification of cyclooxygenase-II inhibitory saponins from fenugreek wastes: insights from liquid chromatography–tandem mass spectrometry metabolomics, molecular networking, and molecular docking. Phytochem Anal. 2024;35:690–707.
pubmed: 38212263
doi: 10.1002/pca.3322
Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol. 2014;48:2097–8.
pubmed: 24476540
doi: 10.1021/es5002105
Hamed AA, El-Shiekh RA, Mohamed OG, Aboutabl EA, Fathy FI, Fawzy GA, et al. Cholinesterase inhibitors from an endophytic fungus aspergillus niveus Fv-er401: Metabolomics, isolation and molecular docking. Molecules. 2023;28:2559.
pubmed: 36985531
doi: 10.3390/molecules28062559
Kort R, Vonk H, Xu X, Hoff WD, Crielaard W, Hellingwerf KJ. Evidence for trans-cis isomerization of the p‐coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow. FEBS Lett. 1996;382:73–8.
pubmed: 8612767
doi: 10.1016/0014-5793(96)00149-4
Daayf F, Bel-Rhlid R, Bélanger RR. Methyl ester of p-coumaric acid: a phytoalexin-like compound from long english cucumber leaves. J Chem Ecol. 1997;23:1517–26.
doi: 10.1023/B:JOEC.0000006419.22408.65
Senthilraja P, Kathiresan K. In vitro cytotoxicity MTT assay in vero, HepG2 and MCF-7 cell lines study of marine yeast. J Appl Pharm Sci. 2015;5:80–4.
doi: 10.7324/JAPS.2015.50313
Cuyckens F, Claeys M. Mass spectrometry in the structural analysis of flavonoids. J Mass Spectrom. 2004;39:1–15.
pubmed: 14760608
doi: 10.1002/jms.585
Pascale R, Acquavia MA, Cataldi TRI, Onzo A, Coviello D, Bufo SA, et al. Profiling of quercetin glycosides and acyl glycosides in sun-dried peperoni di Senise peppers (Capsicum annuum L.) by a combination of LC-ESI(-)-MS/MS and polarity prediction in reversed-phase separations. Anal Bioanal Chem. 2020;412:3005–15.
pubmed: 32215688
doi: 10.1007/s00216-020-02547-2
Mišić D, Šiler B, Gašić U, Avramov S, Živković S, Živković JN, et al. Simultaneous UHPLC/DAD/(+/-)HESI-MS/MS analysis of phenolic acids and nepetalactones in methanol extracts of nepeta species: a possible application in chemotaxonomic studies. Phytochem Anal. 2015;26:72–85.
pubmed: 25431035
doi: 10.1002/pca.2538
Benayad Z, Gómez-Cordovés C, Es-Safi NE. Identification and quantification of flavonoid glycosides from fenugreek (Trigonella foenum-graecum) germinated seeds by LC-DAD-ESI/MS analysis. J Food Compos Anal. 2014;35:21–9.
doi: 10.1016/j.jfca.2014.04.002
Zhang X, Liao M, Cheng X, Liang C, Diao X, Zhang L. Ultrahigh-performance liquid chromatography coupled with triple quadrupole and time-of-flight mass spectrometry for the screening and identification of the main flavonoids and their metabolites in rats after oral administration of Cirsium japonicum DC. Ex. Rapid Commun Mass Spectrom. 2018;32:1451–61.
pubmed: 29781217
doi: 10.1002/rcm.8161
Wu W, Yan C, Li L, Liu Z, Liu S. Studies on the flavones using liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A. 2004;1047:213–20.
pubmed: 15460251
doi: 10.1016/S0021-9673(04)01135-5
Wollenweber E, Fritz H, Henrich B, Jakupovic J, Schilling G, Roitman JN. Rare flavonoid aglycones from Anaphalis Margaritacea and two Gnaphalium Species. Z fur Naturforsch - Sect C J Biosci. 1993;48:420–4.
doi: 10.1515/znc-1993-5-604
Fabre N, Rustan I, de Hoffmann E, Quetin-Leclercq J. Determination of Flavone, Flavonol, and Flavanone aglycones by Negative Ion Liquid Chromatography Electrospray Ion Trap Mass Spectrometry. Am Soc Mass Spectrom. 2012;12:707–15.
doi: 10.1016/S1044-0305(01)00226-4
Nakata R, Yoshinaga N, Teraishi M, Okumoto Y, Huffaker A, Schmelz EA, et al. A fragmentation study of isoflavones by IT-TOF-MS using biosynthesized isotopes. Biosci Biotechnol Biochem. 2018;82:1309–15.
pubmed: 29699437
doi: 10.1080/09168451.2018.1465810
Tai Y, Pei S, Wan J, Cao X, Pan Y. Fragmentation study of protonated chalcones by atmospheric pressure chemical ionization and tandem mass spectrometry. Rapid Commun Mass Spectrom. 2006;20:994–1000.
pubmed: 16479556
doi: 10.1002/rcm.2404
Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem. 2003;51:2866–87.
pubmed: 12720366
doi: 10.1021/jf026182t
Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens JP, Morla A, et al. ESI-MS/MS analysis of underivatised amino acids: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Fragmentation study of 79 molecules of biological interest in positive and negative ionisation mode. Rapid Commun Mass Spectrom. 2003;17:1297–311.
pubmed: 12811753
doi: 10.1002/rcm.1054
Delgado-Povedano M, del Sánchez de Medina M, Bautista V, Priego-Capote J, Luque de Castro F. Tentative identification of the composition of Agaricus Bisporus aqueous enzymatic extracts with antiviral activity against HCV: a study by liquid chromatography-tandem mass spectrometry in high resolution mode. J Funct Foods. 2016;24:403–19.
doi: 10.1016/j.jff.2016.04.020
Thomas MC, Dunn SR, Altvater J, Dove SG, Nette GW. Rapid identification of long-chain polyunsaturated fatty acids in a marine extract by HPLC-MS using data-dependent acquisition. Anal Chem. 2012;84:5976–83.
pubmed: 22816781
doi: 10.1021/ac3006523
Zakharenko AM, Razgonova MP, Pikula KS, Golokhvast KS. Simultaneous determination of 78 compounds of Rhodiola rosea Extract by Supercritical CO2-Extraction and HPLC-ESI-MS/MS spectrometry. Biochem Res Int. 2021;2021:9957490.
pubmed: 34306755
doi: 10.1155/2021/9957490
Wang Y, Zhu H, Wang D, Cheng R, Yang C, Xu M, et al. A new phloroglucinol glucoside from the whole plants of Glochidion Eriocarpum. Bull Korean Chem Soc. 2014;35:631–4.
doi: 10.5012/bkcs.2014.35.2.631
El-Mekkawy S, Hassan AZ, Abdelhafez MA, Mahmoud K, Mahrous KF, Meselhy MR, et al. Cytotoxicity, genotoxicity, and gene expression changes induced by methanolic extract of Moringa Stenopetala leaf with LC-qTOF-MS metabolic profile. Toxicon. 2021;203:40–50.
pubmed: 34610271
doi: 10.1016/j.toxicon.2021.09.025
Rodríguez-Pérez C, Quirantes-Piné R, Fernández-Gutiérrez A, Segura-Carretero A. Comparative characterization of phenolic and other polar compounds in Spanish melon cultivars by using high-performance liquid chromatography coupled to electrospray ionization quadrupole-time of flight mass spectrometry. Food Res Int. 2013;54:1519–27.
doi: 10.1016/j.foodres.2013.09.011
Nebel B, Mittelbach M, Uray G. Determination of the composition of acetylglycerol mixtures by
pubmed: 18947192
doi: 10.1021/ac800706s
Kiprop AK, Pourtier E, Kimutai SK. GC-MS and ESI-MS detection of catechol. Int J Educ Res. 2013;1:1–12.
Hanhineva K, Rogachev I, Aura AM, Aharoni A, Poutanen K, Mykkänen H. Identification of novel lignans in the whole grain rye bran by non-targeted LC-MS metabolite profiling. Metabolomics. 2012;8:399–409.
doi: 10.1007/s11306-011-0325-0
Aryal B, Adhikari B, Aryal N, Bhattarai BR, Khadayat K, Parajuli N. LC-HRMS profiling and antidiabetic, antioxidant, and Antibacterial activities of Acacia catechu (L.f.) Willd. Biomed Res Int. 2021;2021:7588711.
pubmed: 34435049
doi: 10.1155/2021/7588711
Ohana P, Delmer DP, Carlson RW, Glushka J, Azadi P, Bacic T, et al. Identification of a novel triterpenoid saponin from Pisum sativum as a specific inhibitor of the diguanylate cyclase of Acetobacter Xylinum. Plant Cell Physiol. 1998;39:144–52.
pubmed: 9559560
doi: 10.1093/oxfordjournals.pcp.a029351
Noor F, Qamar MTU, Ashfaq UA, Albutti A, Alwashmi ASS, Aljasir MA. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. Pharmaceuticals. 2022;15:1–33.
doi: 10.3390/ph15050572
Tomkins JE, Manzoni C. Advances in protein-protein interaction network analysis for Parkinson’s disease. Neurobiol Dis. 2021;155:105395.
pubmed: 34022367
doi: 10.1016/j.nbd.2021.105395
Avina-Padilla K, Ramırez-Rafael JA, Zambada-Moreno, Herrera-Oropeza O, Emilio G, Romero G, et al. Deciphering the Tissue-Specific Regulatory Role of Intronless Genes across Cancers. In: Jin L, Durand D, editors. Comparative Genomics. Springer Nature Switzerland AG; 2022. pp. 311–39.
Ana Plazonić, Bucar F, Maleŝ Ẑeljan, Mornar A, Nigović B, Kujundẑić N. Identification and quantification of flavonoids and phenolic acids in burr parsley (Caucalis platycarpos L.), using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. Molecules. 2009;14:2466–90.
pubmed: 19633617
doi: 10.3390/molecules14072466
Falcone Ferreyra ML, Rius SP, Casati P. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front Plant Sci. 2012;3:1–15.
doi: 10.3389/fpls.2012.00222
Dias MC, Pinto DCGA, Silva AMS. Plant flavonoids: Chemical characteristics and biological activity. Molecules. 2021;26:1–16.
doi: 10.3390/molecules26175377
Wang J, Fang X, Ge L, Cao F, Zhao L, Wang Z, et al. Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS ONE. 2018;13:1–12.
Liu D, You P, Luo Y, Yang M, Liu Y. Galangin induces apoptosis in MCF-7 human breast Cancer cells through mitochondrial pathway and phosphatidylinositol 3-Kinase/Akt inhibition. Pharmacology. 2018;102:58–66.
pubmed: 29879712
doi: 10.1159/000489564
Vukics V, Guttman A. Structural characterization of flavonoid glycosides by multi-stage mass spectrometry. Mass Spectrom Rev. 2010;29:1–16.
pubmed: 19116944
doi: 10.1002/mas.20212
Lin CH, Chang CY, Lee KR, Lin HJ, Chen TH, Wan L. Flavones inhibit breast cancer proliferation through the Akt/FOXO3a signaling pathway. BMC Cancer. 2015;15:1–12.
doi: 10.1186/s12885-015-1965-7
Serpeloni JM, de Oliveira LCB, Fujiike A, Tuttis K, Ribeiro DL, Camara MBP et al. Flavone cirsimarin impairs cell proliferation, migration, and invasion in MCF-7 cells grown in 2D and 3D models. Toxicol Vitr. 2022;83 June.
Liang Y, Besch-Williford C, Hyder SM. The estrogen receptor beta agonist liquiritigenin enhances the inhibitory effects of the cholesterol biosynthesis inhibitor RO 48-8071 on hormone-dependent breast-cancer growth. Breast Cancer Res Treat. 2022;192:53–63.
pubmed: 35037188
doi: 10.1007/s10549-021-06487-y
Harmon AW, Patel YM. Naringenin inhibits glucose uptake in MCF-7 breast cancer cells: a mechanism for impaired cellular proliferation. Breast Cancer Res Treat. 2004;85:103–10.
pubmed: 15111768
doi: 10.1023/B:BREA.0000025397.56192.e2
Basu P, Maier C. Phytoestrogens and breast cancer: in vitro anticancer activities of isoflavones, lignans, coumestans, stilbenes and their analogs and derivatives. Biomed Pharmacother. 2018;107:1648–66.
pubmed: 30257383
doi: 10.1016/j.biopha.2018.08.100
Wang KL, Hsia SM, Chan CJ, Chang FY, Huang CY, Bau DT, et al. Inhibitory effects of isoliquiritigenin on the migration and invasion of human breast cancer cells. Expert Opin Ther Targets. 2013;17:337–49.
pubmed: 23327692
doi: 10.1517/14728222.2013.756869
Wang Z, Wang N, Han S, Wang D, Mo S, Yu L, et al. Dietary compound isoliquiritigenin inhibits breast Cancer neoangiogenesis via VEGF/VEGFR-2 signaling pathway. PLoS ONE. 2013;8:e68566.
pubmed: 23861918
pmcid: 3702614
doi: 10.1371/journal.pone.0068566
Mandal SM, Chakraborty D, Dey S. Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav. 2010;5:359–68.
pubmed: 20400851
pmcid: 2958585
doi: 10.4161/psb.5.4.10871
Kumar N, Goel N. Phenolic acids: natural versatile molecules with promising therapeutic applications. Biotechnol Rep. 2019;24:e00370.
doi: 10.1016/j.btre.2019.e00370
Gruz J, Novák O, Strnad M. Rapid analysis of phenolic acids in beverages by UPLC-MS/MS. Food Chem. 2008;111:789–94.
doi: 10.1016/j.foodchem.2008.05.014
Kampa M, Alexaki VI, Notas G, Nifli AP, Nistikaki A, Hatzoglou A, et al. Antiproliferative and apoptotic effects of selective phenolic acids on T47D human breast cancer cells: potential mechanisms of action. Breast Cancer Res. 2004;6:63–74.
doi: 10.1186/bcr752
Baqir HA, Zeboon NH, Al-Behadili AAJ. The role and importance of amino acids within plants: a review. Plant Arch. 2019;19:1402–10.
El Aribi H, Orlova G, Hopkinson AC, Siu KWM. Gas-phase fragmentation reactions of protonated aromatic amino acids: concomitant and consecutive neutral eliminations and radical cation formations. J Phys Chem A. 2004;108:3844–53.
doi: 10.1021/jp0374915
Grobbelaar N, Steward FC. The isolation of amino acids from Pisum sativum. Identification of l(-)-homoserine and l(+)-O-acetylhomoserine and certain effects of environment upon their formation. Phytochemistry. 1969;8:553–9.
doi: 10.1016/S0031-9422(00)85399-6
Wu G. Functional amino acids in Growth, Reproduction, and Health. Adv Nutr. 2010;1:31–7.
pubmed: 22043449
pmcid: 3042786
doi: 10.3945/an.110.1008
Khan N, Ali S, Zandi P, Mehmood A, Ullah S, Ikram M, et al. Role of sugars, amino acids and organic acids in improving plant abiotic stress tolerance. Pakistan J Bot. 2020;52:355–63.
Wiktorowska-Owczarek A, Berezińska M, Nowak JZ. PUFAs: structures, metabolism and functions. Adv Clin Exp Med. 2015;24:931–41.
pubmed: 26771963
doi: 10.17219/acem/31243
Weber H. Fatty acid-derived signals in plants. Trends Plant Sci. 2002;7:217–24.
pubmed: 11992827
doi: 10.1016/S1360-1385(02)02250-1
Parvin R, Shahrokh KO, Mozafar S, Hassan E, Mehrdad B. Biosynthesis, regulation and properties of plant monoterpenoids. J Med Plants Res. 2014;8:983–91.
doi: 10.5897/JMPR2012.387
Weidenhamer JD, Macias FA, Fischer NH, Williamson GB. Just how insoluble are monoterpenes? J Chem Ecol. 1993;19:1799–807.
pubmed: 24249242
doi: 10.1007/BF00982309
Supuran CT, Winum JY. Designing carbonic anhydrase inhibitors for the treatment of breast cancer. Expert Opin Drug Discov. 2015;10:591–7.
pubmed: 25891195
doi: 10.1517/17460441.2015.1038235
Franke CM, Gu VW, Grimm BG, Cassady VC, White JR, Weigel RJ, et al. TFAP2C regulates carbonic anhydrase XII in human breast cancer. Oncogene. 2020;39:1290–301.
pubmed: 31636386
doi: 10.1038/s41388-019-1062-5
Dumay A, Feugeas JP, Wittmer E, Lehmann-Che J, Bertheau P, Espié M, et al. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer. 2013;132:1227–31.
pubmed: 22886769
doi: 10.1002/ijc.27767
Riggio M, Perrone MC, Polo ML, Rodriguez MJ, May M, Abba M, et al. AKT1 and AKT2 isoforms play distinct roles during breast cancer progression through the regulation of specific downstream proteins. Sci Rep. 2017;7:1–12.
doi: 10.1038/srep44244
Maennling AE, Tur MK, Niebert M, Klockenbring T, Zeppernick F, Gattenlöhner S, et al. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials. Cancers (Basel). 2019;11:1826.
pubmed: 31756933
doi: 10.3390/cancers11121826
Vlahovic G, Crawford J. Activation of Tyrosine Kinases in Cancer. Oncologist. 2003;8:531–8.
pubmed: 14657531
doi: 10.1634/theoncologist.8-6-531