The causal effects of lifestyle, circulating, pigment, and metabolic factors on early age-related macular degeneration: a comprehensive Mendelian randomization study.


Journal

Journal of translational medicine
ISSN: 1479-5876
Titre abrégé: J Transl Med
Pays: England
ID NLM: 101190741

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 26 04 2024
accepted: 18 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Early detection of lifestyle factors, skin and hair color, circulating parameters, and metabolic comorbidities is crucial for personalized prevention and treatment of early age-related macular degeneration (AMD). This study aimed to assess the relationships between genetically predicted comprehensive risk factors and early AMD. Publicly available genome-wide association study (GWAS) data were utilized to identify genetic variants significantly associated with each trait. We applied a Bonferroni-corrected significance level of P < 0.0017. P values between 0.0017 and 0.05 were considered suggestive associations. Univariable Mendelian randomization (MR) analyses revealed that elevated serum HDL-C, lower serum TG, and decreased three circulating fatty acids levels were robust indicators of an increased risk of early AMD (all P < 0.0017), with odds ratios (ORs) and 95% confidence intervals (CIs) of 1.218 (1.140-1.303), 0.784 (0.734-0.837), 0.772 (0.698-0.855), 0.776 (0.706-0.852), and 0.877 (0.798-0.963), respectively. Additionally, the "never eat wheat products", "age started wearing glasses", and "skin color" were significantly associated with the risk of early AMD (both P < 0.0017), with ORs (95% CIs) of 23.853 (2.731-208.323), 1.605 (1.269-2.030) and 1.190 (1.076-1.317), respectively. Multivariable MR analysis confirmed that elevated serum HDL-C (OR = 1.187, 1.064-1.324) increased the risk of early AMD, while higher serum TG (OR = 0.838, 0.738-0.950) was associated with a significantly lower risk. Furthermore, validation results indicated that serum HDL-C 1.201 (1.101-1.310) and TG 0.795 (0.732-0.864) were significantly associated with the risk of early AMD. There were suggestive associations of smoothies, chronotype, and hair color (0.0017 < P < 0.05), but sun/UV protection, smoking, BMI, diabetes, high blood pressure, cardiovascular diseases, fresh fruit intake, fish oil/cod liver oil supplement, sleeplessness, serum C-reactive protein level, and iron level were not associated with the risk of early AMD. Our comprehensive MR analysis demonstrated that elevated circulating HDL-C levels increase the risk of early AMD, while TG and fatty acid levels are associated with a decreased risk. These findings provide robust evidence for improved diagnosis and personalized prevention and treatment of early AMD.

Identifiants

pubmed: 39482668
doi: 10.1186/s12967-024-05773-9
pii: 10.1186/s12967-024-05773-9
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

988

Informations de copyright

© 2024. The Author(s).

Références

Mitchell P, et al. Age-related macular degeneration. Lancet. 2018;392(10153):1147–59.
pubmed: 30303083 doi: 10.1016/S0140-6736(18)31550-2
Li CM, et al. Distribution and composition of esterified and unesterified cholesterol in extra-macular drusen. Exp Eye Res. 2007;85(2):192–201.
pubmed: 17553492 doi: 10.1016/j.exer.2007.04.002
Guymer RH, Campbell TG. Age-related macular degeneration. Lancet. 2023;401(10386):1459–72.
pubmed: 36996856 doi: 10.1016/S0140-6736(22)02609-5
Woolf B, et al. Investigating the transparency of reporting in two-sample summary data Mendelian randomization studies using the MR-Base platform. Int J Epidemiol. 2022;51(6):1943–56.
pubmed: 35383846 pmcid: 9749715 doi: 10.1093/ije/dyac074
Smith GD, Ebrahim S. “Mendelian randomization”: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.
pubmed: 12689998 doi: 10.1093/ije/dyg070
Ajana S, et al. Predicting progression to advanced age-related macular degeneration from clinical, genetic, and lifestyle factors using machine learning. Ophthalmology. 2021;128(4):587–97.
pubmed: 32890546 doi: 10.1016/j.ophtha.2020.08.031
Colijn JM, et al. Genetic risk, lifestyle, and age-related macular degeneration in europe: the EYE-RISK consortium. Ophthalmology. 2021;128(7):1039–49.
pubmed: 33253757 doi: 10.1016/j.ophtha.2020.11.024
Sia JT, et al. Associations between age-related macular degeneration and sleep dysfunction: a systematic review. Clin Exp Ophthalmol. 2022;50(9):1025–37.
pubmed: 36054031 doi: 10.1111/ceo.14146
Lei S, Liu Z, Li H. Sleep duration and age-related macular degeneration: a cross-sectional and Mendelian randomization study. Front Aging Neurosci. 2023;15:1247413.
pubmed: 37674785 pmcid: 10477604 doi: 10.3389/fnagi.2023.1247413
Zhu RC, et al. Minimal effect of sleep on the risk of age-related macular degeneration: a Mendelian randomization study. Front Aging Neurosci. 2023;15:1159711.
pubmed: 37671084 pmcid: 10475584 doi: 10.3389/fnagi.2023.1159711
Klein BE, et al. Sunlight exposure, pigmentation, and incident age-related macular degeneration. Invest Ophthalmol Vis Sci. 2014;55(9):5855–61.
pubmed: 25125603 pmcid: 4165367 doi: 10.1167/iovs.14-14602
Kuan V, et al. Association of smoking, alcohol consumption, blood pressure, body mass index, and glycemic risk factors with age-related macular degeneration: a Mendelian randomization study. JAMA Ophthalmol. 2021;139(12):1299–306.
pubmed: 34734970 pmcid: 8569599 doi: 10.1001/jamaophthalmol.2021.4601
Klein R, Myers CE, Klein BE. Vasodilators, blood pressure-lowering medications, and age-related macular degeneration: the Beaver Dam eye study. Ophthalmology. 2014;121(8):1604–11.
pubmed: 24793737 doi: 10.1016/j.ophtha.2014.03.005
Ting DSW, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318(22):2211–23.
pubmed: 29234807 pmcid: 5820739 doi: 10.1001/jama.2017.18152
Zhang QY, et al. Overweight, obesity, and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57(3):1276–83.
pubmed: 26990164 doi: 10.1167/iovs.15-18637
Chakravarthy U, et al. Clinical risk factors for age-related macular degeneration: a systematic review and meta-analysis. BMC Ophthalmol. 2010;10:31.
pubmed: 21144031 pmcid: 3009619 doi: 10.1186/1471-2415-10-31
Burgess S, Davey Smith G. Mendelian randomization implicates high-density lipoprotein cholesterol-associated mechanisms in etiology of age-related macular degeneration. Ophthalmology. 2017;124(8):1165–74.
pubmed: 28456421 doi: 10.1016/j.ophtha.2017.03.042
Colijn JM, et al. Increased high-density lipoprotein levels associated with age-related macular degeneration: evidence from the EYE-RISK and European eye epidemiology consortia. Ophthalmology. 2019;126(3):393–406.
pubmed: 30315903 doi: 10.1016/j.ophtha.2018.09.045
Fan Q, et al. HDL-cholesterol levels and risk of age-related macular degeneration: a multiethnic genetic study using Mendelian randomization. Int J Epidemiol. 2017;46(6):1891–902.
pubmed: 29025108 pmcid: 5837540 doi: 10.1093/ije/dyx189
Han X, et al. Genome-wide meta-analysis identifies novel loci associated with age-related macular degeneration. J Hum Genet. 2020;65(8):657–65.
pubmed: 32277175 doi: 10.1038/s10038-020-0750-x
Rastogi N, Smith RT. Association of age-related macular degeneration and reticular macular disease with cardiovascular disease. Surv Ophthalmol. 2016;61(4):422–33.
pubmed: 26518628 doi: 10.1016/j.survophthal.2015.10.003
Han X, et al. The effects of eight serum lipid biomarkers on age-related macular degeneration risk: a Mendelian randomization study. Int J Epidemiol. 2021;50(1):325–36.
pubmed: 33211829 doi: 10.1093/ije/dyaa178
Burgess S, et al. Guidelines for performing Mendelian randomization investigations: update for summer 2023. Wellcome Open Res. 2019;4:186.
pubmed: 32760811 doi: 10.12688/wellcomeopenres.15555.1
Cho Y, et al. Exploiting horizontal pleiotropy to search for causal pathways within a Mendelian randomization framework. Nat Commun. 2020;11(1):1010.
pubmed: 32081875 pmcid: 7035387 doi: 10.1038/s41467-020-14452-4
Burgess S, et al. A robust and efficient method for Mendelian randomization with hundreds of genetic variants. Nat Commun. 2020;11(1):376.
pubmed: 31953392 pmcid: 6969055 doi: 10.1038/s41467-019-14156-4
Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44(2):512–25.
pubmed: 26050253 pmcid: 4469799 doi: 10.1093/ije/dyv080
Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32(5):377–89.
pubmed: 28527048 pmcid: 5506233 doi: 10.1007/s10654-017-0255-x
Bowden J, et al. Consistent estimation in Mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40(4):304–14.
pubmed: 27061298 pmcid: 4849733 doi: 10.1002/gepi.21965
Gao Y, Fan ZR, Shi FY. Hypothyroidism and rheumatoid arthritis: a two-sample Mendelian randomization study. Front Endocrinol (Lausanne). 2023;14:1179656.
pubmed: 37324262 doi: 10.3389/fendo.2023.1179656
Carter AR, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation. Eur J Epidemiol. 2021;36(5):465–78.
pubmed: 33961203 pmcid: 8159796 doi: 10.1007/s10654-021-00757-1
Yuan S, et al. Lifestyle and metabolic factors for nonalcoholic fatty liver disease: Mendelian randomization study. Eur J Epidemiol. 2022;37(7):723–33.
pubmed: 35488966 pmcid: 9329390 doi: 10.1007/s10654-022-00868-3
Hemani G, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7: e34408.
pubmed: 29846171 pmcid: 5976434 doi: 10.7554/eLife.34408
Montaruli A, et al. Biological rhythm and chronotype: new perspectives in health. Biomolecules. 2021;11(4):487.
pubmed: 33804974 pmcid: 8063933 doi: 10.3390/biom11040487
Jones SE, et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat Commun. 2019;10(1):343.
pubmed: 30696823 pmcid: 6351539 doi: 10.1038/s41467-018-08259-7
Pan CW, et al. Differential associations of myopia with major age-related eye diseases: the Singapore Indian Eye Study. Ophthalmology. 2013;120(2):284–91.
pubmed: 23084122 doi: 10.1016/j.ophtha.2012.07.065
Amari B, et al. Lifetime ambient ultraviolet radiation exposure and incidence of age-related macular degeneration. Retina. 2024;44(1):28–36.
pubmed: 38117581 doi: 10.1097/IAE.0000000000003917
Pallikaris IG, et al. Ocular rigidity in patients with age-related macular degeneration. Am J Ophthalmol. 2006;141(4):611–5.
pubmed: 16564793 doi: 10.1016/j.ajo.2005.11.010
Jonas JB, et al. VEGF and refractive error. Ophthalmology. 2010;117(11):2234.
doi: 10.1016/j.ophtha.2009.12.006
Wang Y, et al. The association between the lipids levels in blood and risk of age-related macular degeneration. Nutrients. 2016;8(10):663.
pubmed: 27782072 pmcid: 5084049 doi: 10.3390/nu8100663
Wang K, et al. Causal effects of N-6 polyunsaturated fatty acids on age-related macular degeneration: a Mendelian randomization study. J Clin Endocrinol Metab. 2021;106(9):e3565–72.
pubmed: 33982092 doi: 10.1210/clinem/dgab338
Han X, et al. Integrating genetics and metabolomics from multi-ethnic and multi-fluid data reveals putative mechanisms for age-related macular degeneration. Cell Rep Med. 2023;4(7): 101085.
pubmed: 37348500 pmcid: 10394104 doi: 10.1016/j.xcrm.2023.101085
Rao VS, Kakkar VV. Friend turns foe: transformation of anti-inflammatory HDL to proinflammatory HDL during acute-phase response. Cholesterol. 2011;2011:274629.
pubmed: 21490770
Handa JT, et al. Lipids, oxidized lipids, oxidation-specific epitopes, and age-related macular degeneration. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(4):430–40.
pubmed: 27480216 doi: 10.1016/j.bbalip.2016.07.013
Gabrielle PH. Lipid metabolism and retinal diseases. Acta Ophthalmol. 2022;100(Suppl 269):3–43.
pubmed: 36117363 doi: 10.1111/aos.15226
Fu Z, et al. Dyslipidemia in retinal metabolic disorders. EMBO Mol Med. 2019;11(10): e10473.
pubmed: 31486227 pmcid: 6783651 doi: 10.15252/emmm.201910473
Lin JB, et al. Dyslipidemia in age-related macular degeneration. Eye (Lond). 2022;36(2):312–8.
pubmed: 35017697 doi: 10.1038/s41433-021-01780-y
Han X, et al. Using Mendelian randomization to evaluate the causal relationship between serum C-reactive protein levels and age-related macular degeneration. Eur J Epidemiol. 2020;35(2):139–46.
pubmed: 31900758 doi: 10.1007/s10654-019-00598-z
Vergroesen JE, et al. Association of diabetes medication with open-angle glaucoma, age-related macular degeneration, and cataract in the rotterdam study. JAMA Ophthalmol. 2022;140(7):674–81.
pubmed: 35587864 pmcid: 9121302 doi: 10.1001/jamaophthalmol.2022.1435
van Leeuwen R, et al. Blood pressure, atherosclerosis, and the incidence of age-related maculopathy: the Rotterdam Study. Invest Ophthalmol Vis Sci. 2003;44(9):3771–7.
pubmed: 12939290 doi: 10.1167/iovs.03-0121
Cougnard-Gregoire A, et al. Long-term blood pressure and age-related macular degeneration: the ALIENOR study. Invest Ophthalmol Vis Sci. 2013;54(3):1905–12.
pubmed: 23404120 doi: 10.1167/iovs.12-10192
Tan JS, et al. Cardiovascular risk factors and the long-term incidence of age-related macular degeneration: the Blue Mountains Eye Study. Ophthalmology. 2007;114(6):1143–50.
pubmed: 17275090 doi: 10.1016/j.ophtha.2006.09.033
Pennington KL, DeAngelis MM. Epidemiology of age-related macular degeneration (AMD): associations with cardiovascular disease phenotypes and lipid factors. Eye Vis (Lond). 2016;3:34.
pubmed: 28032115 doi: 10.1186/s40662-016-0063-5
Tomany SC, et al. Risk factors for incident age-related macular degeneration: pooled findings from 3 continents. Ophthalmology. 2004;111(7):1280–7.
pubmed: 15234127 doi: 10.1016/j.ophtha.2003.11.010
Klein R, et al. The association of cardiovascular disease with the long-term incidence of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology. 2003;110(6):1273–80.
pubmed: 12799274 doi: 10.1016/S0161-6420(03)00599-2

Auteurs

Gang Shen (G)

Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, China.

Yaqiong Chen (Y)

Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, China.

Jiahao Chen (J)

Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, China.

Lingling Wang (L)

Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, China.

Huanhuan Cheng (H)

Department of Ophthalmology, Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, China. chenghh3@mail.sysu.edu.cn.

Bo Hu (B)

Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, China. hubo@mail.sysu.edu.cn.

Jiao Gong (J)

Department of Laboratory Medicine, Third Affiliated Hospital of Sun Yat-Sen University, Tianhe Road 600#, Guangzhou, 510630, China. gongjiao@mail2.sysu.edu.cn.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH