Comparative analysis of innate immune responses in Sonali and broiler chickens infected with tribasic H9N2 low pathogenic avian influenza virus.


Journal

BMC veterinary research
ISSN: 1746-6148
Titre abrégé: BMC Vet Res
Pays: England
ID NLM: 101249759

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 06 08 2024
accepted: 22 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

H9N2 avian influenza viruses have been circulating in Bangladesh since 2006, affecting multiple avian species and resulting in economic losses. The recent emergence of tribasic strains, along with co-infections, has increased the risk to poultry health. Therefore, the study aimed to compare the immune responses of Sonali (crossbred) and commercial broiler chickens infected with tribasic H9N2 low pathogenic avian influenza (LPAI) virus. Following H9N2 infection, proinflammatory (IL-6, IL-8, IL-1β and TNF-α) and antiviral (IFN-β and IFN-γ) cytokine expressions were observed in the trachea, lungs, intestine, and lymphoid tissues in Sonali and broiler chickens from 1 day post infection (dpi) to 10 dpi by qPCR. Sonali chickens exhibited significantly higher proinflammatory and antiviral cytokine expressions in the trachea at 3-7 days post infection (dpi), while broiler chickens showed lower immune responses. Broiler chickens displayed prolonged IL-6, IL-8, and IL-1β expression in lungs at 3-10 dpi compared to Sonali chickens. In the intestine, broiler chickens showed higher IL-6 and IL-8 expression that peaks at 1-3 dpi, while in Sonali chickens only IL-1β elevated at 10 dpi. In response to the H9N2 viruses, broiler chickens exhibited a stronger early IFN-β responses and a delayed IFN-γ responses in their lymphoid organs compared to Sonali chickens. This suggests distinct immune profiles between the chicken types in response to the H9N2 infection. The information sheds light on the function of innate immunity in the pathophysiology of currently circulating tribasic H9N2 virus and could assist in effective controlling of avian influenza virus spread in poultry and designing vaccines.

Sections du résumé

BACKGROUND BACKGROUND
H9N2 avian influenza viruses have been circulating in Bangladesh since 2006, affecting multiple avian species and resulting in economic losses. The recent emergence of tribasic strains, along with co-infections, has increased the risk to poultry health. Therefore, the study aimed to compare the immune responses of Sonali (crossbred) and commercial broiler chickens infected with tribasic H9N2 low pathogenic avian influenza (LPAI) virus.
METHODS METHODS
Following H9N2 infection, proinflammatory (IL-6, IL-8, IL-1β and TNF-α) and antiviral (IFN-β and IFN-γ) cytokine expressions were observed in the trachea, lungs, intestine, and lymphoid tissues in Sonali and broiler chickens from 1 day post infection (dpi) to 10 dpi by qPCR.
RESULTS RESULTS
Sonali chickens exhibited significantly higher proinflammatory and antiviral cytokine expressions in the trachea at 3-7 days post infection (dpi), while broiler chickens showed lower immune responses. Broiler chickens displayed prolonged IL-6, IL-8, and IL-1β expression in lungs at 3-10 dpi compared to Sonali chickens. In the intestine, broiler chickens showed higher IL-6 and IL-8 expression that peaks at 1-3 dpi, while in Sonali chickens only IL-1β elevated at 10 dpi. In response to the H9N2 viruses, broiler chickens exhibited a stronger early IFN-β responses and a delayed IFN-γ responses in their lymphoid organs compared to Sonali chickens.
CONCLUSION CONCLUSIONS
This suggests distinct immune profiles between the chicken types in response to the H9N2 infection. The information sheds light on the function of innate immunity in the pathophysiology of currently circulating tribasic H9N2 virus and could assist in effective controlling of avian influenza virus spread in poultry and designing vaccines.

Identifiants

pubmed: 39482682
doi: 10.1186/s12917-024-04346-8
pii: 10.1186/s12917-024-04346-8
doi:

Substances chimiques

Cytokines 0

Types de publication

Journal Article Comparative Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

500

Subventions

Organisme : Ministry of Science and Technology, Government of the People's Republic of Bangladesh
ID : 2023/24/MoST/R&D
Organisme : Bangladesh Agricultural University Research System
ID : 2020/963/BAU
Organisme : University Grants Commission of Bangladesh
ID : 2023/11/UGC

Informations de copyright

© 2024. The Author(s).

Références

Gerloff NA, Khan SU, Zanders N, Balish A, Haider N, Islam A, et al. <ArticleTitle Language=“En”>Genetically diverse low pathogenicity avian influenza a virus subtypes co-circulate among poultry in Bangladesh. PLoS ONE. 2016;11(3):e0152131. https://doi.org/10.1371/journal.pone.0152131 .
doi: 10.1371/journal.pone.0152131 pubmed: 27010791 pmcid: 4806916
Shanmuganatham K, Feeroz MM, Jones-Engel L, Smith GJ, Fourment M, Walker D, et al. Antigenic and molecular characterization of avian influenza A (H9N2) viruses, Bangladesh. Emerg Infect Dis. 2013;19(9):1393. https://doi.org/10.3201%2Feid1909.130336.
doi: 10.3201/eid1909.130336 pubmed: 23968540 pmcid: 3810925
Khan SU, Gurley ES, Gerloff N, Rahman MZ, Simpson N, Rahman M, et al. Avian influenza surveillance in domestic waterfowl and environment of live bird markets in Bangladesh, 2007–2012. Sci Rep. 2018;8(1):9396. https://doi.org/10.1038/s41598-018-27515-w .
doi: 10.1038/s41598-018-27515-w pubmed: 29925854 pmcid: 6010472
Kariithi HM, Welch CN, Ferreira HL, Pusch EA, Ateya LO, Binepal YS, et al. Genetic characterization and pathogenesis of the first H9N2 low pathogenic avian influenza viruses isolated from chickens in Kenyan live bird markets. Infect Genet Evol. 2020;78:104074. https://doi.org/10.1016/j.meegid.2019.104074 .
doi: 10.1016/j.meegid.2019.104074 pubmed: 31634645
Kye S-J, Park M-J, Kim N-Y, Lee Y-N, Heo G-B, Baek Y-K, et al. Pathogenicity of H9N2 low pathogenic avian influenza viruses of different lineages isolated from live bird markets tested in three animal models: SPF chickens, Korean native chickens, and ducks. Poult Sci. 2021;100(9):101318. https://doi.org/10.1016/j.psj.2021.101318 .
doi: 10.1016/j.psj.2021.101318 pubmed: 34284181 pmcid: 8313579
Alexander DJ. A review of avian influenza in different bird species. Vet microbiol. 2000;74(1–2):3–13. https://doi.org/10.1016/s0378-1135(00)00160-7 .
doi: 10.1016/s0378-1135(00)00160-7 pubmed: 10799774
Parvin R, Heenemann K, Halami MY, Chowdhury EH, Islam M, Vahlenkamp TW. Full-genome analysis of avian influenza virus H9N2 from Bangladesh reveals internal gene reassortments with two distinct highly pathogenic avian influenza viruses. Arch virol. 2014;159:1651–61. https://doi.org/10.1007/s00705-014-1976-8 .
doi: 10.1007/s00705-014-1976-8 pubmed: 24420161
Parvin R, Begum JA, Nooruzzaman M, Chowdhury EH, Islam MR, Vahlenkamp TW. Review analysis and impact of co-circulating H5N1 and H9N2 avian influenza viruses in Bangladesh. Epidemiol Infect. 2018;146(10):1259–66. https://doi.org/10.1017/S0950268818001292 .
doi: 10.1017/S0950268818001292 pubmed: 29781424
Zhang J, Ma K, Li B, Chen Y, Qiu Z, Xing J, et al. A risk marker of tribasic hemagglutinin cleavage site in influenza A (H9N2) virus. Commun Biol. 2021;4(1):71. https://doi.org/10.1038/s42003-020-01589-7 .
doi: 10.1038/s42003-020-01589-7 pubmed: 33452423 pmcid: 7811019
Parvin R, Schinkoethe J, Grund C, Ulrich R, Bönte F, Behr KP, et al. Comparison of pathogenicity of subtype H9 avian influenza wild-type viruses from a wide geographic origin expressing mono-, di-, or tri-basic hemagglutinin cleavage sites. Vet Res. 2020;51:1–12. https://doi.org/10.1186/s13567-020-00771-3 .
doi: 10.1186/s13567-020-00771-3
Parvin R, Nooruzzaman M, Kabiraj CK, Begum JA, Chowdhury EH, Islam MR, et al. Controlling avian influenza virus in Bangladesh: challenges and recommendations. Viruses. 2020;12(7):751. https://doi.org/10.3390/v12070751 .
doi: 10.3390/v12070751 pubmed: 32664683 pmcid: 7412482
Casadevall A, Pirofski L. Host-pathogen interactions: the attributes of virulence. J Infect Dis. 2001;184(3):337–44. https://doi.org/10.1086/322044 .
doi: 10.1086/322044 pubmed: 11443560
Lednicky JA, Hamilton SB, Tuttle RS, Sosna WA, Daniels DE, Swayne DE. Ferrets develop fatal influenza after inhaling small particle aerosols of highly pathogenic avian influenza virus A/Vietnam/1203/2004 (H5N1). Virol J. 2010;7:1–15. https://doi.org/10.1186/1743-422X-7-231 .
doi: 10.1186/1743-422X-7-231
Taye B, Chen H, Myaing MZ, Tan BH, Maurer-Stroh S, Sugrue RJ. Systems-based approach to examine the cytokine responses in primary mouse lung macrophages infected with low pathogenic avian Influenza virus circulating in South East Asia. BMC Genomics. 2017;18:1–16. https://doi.org/10.1186/s12864-017-3803-6 .
doi: 10.1186/s12864-017-3803-6
Begum JA, Hossain I, Nooruzzaman M, King J, Chowdhury EH, Harder TC, et al. Experimental pathogenicity of H9N2 avian influenza viruses harboring a tri-basic hemagglutinin cleavage site in Sonali and broiler chickens. Viruses. 2023;15(2):461. https://doi.org/10.3390/v15020461 .
doi: 10.3390/v15020461 pubmed: 36851676 pmcid: 9967266
Fujisawa H, Tsuru S, Taniguchi M, Zinnaka Y, Nomoto K. Protective mechanisms against pulmonary infection with influenza virus. I. Relative contribution of polymorphonuclear leukocytes and of alveolar macrophages to protection during the early phase of intranasal infection. J Gen Virol. 1987;68(2):425–32. https://doi.org/10.1099/0022-1317-68-2-425 .
doi: 10.1099/0022-1317-68-2-425 pubmed: 3819696
Kaufmann A, Salentin R, Meyer RG, Bussfeld D, Pauligk C, Fesq H, et al. Defense against influenza A virus infection: essential role of the chemokine system. Immunobiology. 2001;204(5):603–13. https://doi.org/10.1078/0171-2985-00099 .
doi: 10.1078/0171-2985-00099 pubmed: 11846225
Xing Z, Cardona CJ, Li J, Dao N, Tran T, Andrada J. Modulation of the immune responses in chickens by low-pathogenicity avian influenza virus H9N2. J Gen Virol. 2008;89(5):1288–99. https://doi.org/10.1099/vir.0.83362-0 .
doi: 10.1099/vir.0.83362-0 pubmed: 18420808
Gu Y, Hsu ACY, Pang Z, Pan H, Zuo X, Wang G, et al. Role of the innate cytokine storm induced by the influenza A virus. Viral Immunol. 2019;32(6):244–51. https://doi.org/10.1089/vim.2019.0032 .
doi: 10.1089/vim.2019.0032 pubmed: 31188076
Rebel JM, Peeters B, Fijten H, Post J, Cornelissen J, Vervelde L. Highly pathogenic or low pathogenic avian influenza virus subtype H7N1 infection in chicken lungs: small differences in general acute responses. Vet Res. 2011;42:1–11. https://doi.org/10.1186/1297-9716-42-10 .
doi: 10.1186/1297-9716-42-10
Karpala AJ, Bingham J, Schat KA, Chen L-M, Donis RO, Lowenthal JW, et al. Highly pathogenic (H5N1) avian influenza induces an inflammatory T helper type 1 cytokine response in the chicken. J Interferon Cytokine Res. 2011;31(4):393–400. https://doi.org/10.1089/jir.2010.0069 .
doi: 10.1089/jir.2010.0069 pubmed: 21194349
Wang J, Cao Z, Guo X, Zhang Y, Wang D, Xu S, et al. Cytokine expression in three chicken host systems infected with H9N2 influenza viruses with different pathogenicities. Avian Pathol. 2016;45(6):630–9. https://doi.org/10.1080/03079457.2016.1193665 .
doi: 10.1080/03079457.2016.1193665 pubmed: 27215697
Vervelde L, Reemers SS, van Haarlem DA, Post J, Claassen E, Rebel JM, et al. Chicken dendritic cells are susceptible to highly pathogenic avian influenza viruses which induce strong cytokine responses. Dev Comp Immunol. 2013;39(3):198–206. https://doi.org/10.1016/j.dci.2012.10.011 .
doi: 10.1016/j.dci.2012.10.011 pubmed: 23178410
Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001;65(1):131–50. https://doi.org/10.1128/MMBR.65.1.131-150.2001 .
doi: 10.1128/MMBR.65.1.131-150.2001 pubmed: 11238989 pmcid: 99022
Bertran K, Pantin-Jackwood MJ, Criado MF, Lee D-H, Balzli CL, Spackman E, et al. Pathobiology and innate immune responses of gallinaceous poultry to clade 2.3. 4.4 A H5Nx highly pathogenic avian influenza virus infection. Vet Res. 2019;50:1–14. https://doi.org/10.1186/s13567-019-0704-5 .
doi: 10.1186/s13567-019-0704-5
Helin AS, Wille M, Atterby C, Järhult JD, Waldenström J, Chapman JR. A rapid and transient innate immune response to avian influenza infection in mallards. Mol Immunol. 2018;95:64–72. https://doi.org/10.1016/j.molimm.2018.01.012 .
doi: 10.1016/j.molimm.2018.01.012 pubmed: 29407578
Lee D-H, Yuk S-S, Park J-K, Kwon J-H, Erdene-Ochir T-O, Noh J-Y, et al. Innate immune response gene expression profiles in specific pathogen-free chickens infected with avian influenza virus subtype H9N2. BioChip J. 2013;7:393–8.
doi: 10.1007/s13206-013-7411-5
Guan J, Fu Q, Sharif S. Replication of an H9N2 avian influenza virus and cytokine gene expression in chickens exposed by aerosol or intranasal routes. Avian Dis. 2015;59(2):263–8. https://doi.org/10.1637/10972-110714-Reg .
doi: 10.1637/10972-110714-Reg pubmed: 26473677
Adams SC, Xing Z, Li J, Cardona CJ. Immune-related gene expression in response to H11N9 low pathogenic avian influenza virus infection in chicken and Pekin duck peripheral blood mononuclear cells. Mol ImmunoL. 2009;46(8–9):1744–9. https://doi.org/10.1016/j.molimm.2009.01.025 .
doi: 10.1016/j.molimm.2009.01.025 pubmed: 19250679
Daviet S, Van Borm S, Habyarimana A, Ahanda M-LE, Morin V, Oudin A, et al. Induction of Mx and PKR failed to protect chickens from H5N1 infection. Viral Immunol. 2009;22(6):467–72. https://doi.org/10.1089/vim.2009.0053 .
doi: 10.1089/vim.2009.0053 pubmed: 19951185
Zeng H, Goldsmith C, Thawatsupha P, Chittaganpitch M, Waicharoen S, Zaki S, et al. Highly pathogenic avian influenza H5N1 viruses elicit an attenuated type i interferon response in polarized human bronchial epithelial cells. J Virol. 2007;81(22):12439–49. https://doi.org/10.1128/JVI.01134-07 .
doi: 10.1128/JVI.01134-07 pubmed: 17855549 pmcid: 2169033
Dinarello CA. Impact of basic research on tomorrow’s medicine. Proinflammatory cytokines Chest. 2000;118(2):503–8. https://doi.org/10.1378/chest.118.2.503 .
doi: 10.1378/chest.118.2.503 pubmed: 10936147
Ank N, West H, Paludan SR. IFN-λ: novel antiviral cytokines. J Interferon Cytokine Res. 2006;26(6):373–9. https://doi.org/10.1089/jir.2006.26.373 .
doi: 10.1089/jir.2006.26.373 pubmed: 16734557
Saleque M, Saha A, editors. Production and economic performance of small scale Sonali bird farming for meat production in Bangladesh. Proceedings of the Semian, 8th International Poultry Show and Seminar, Dhaka, World Poultry Science Association Barach; 2013.
Amin JR, Mercier Y, Iji P, editors. Gross response and meat yield of broile r chickens fed different levels of digestible methionine. Proceedings of the 19t h European Symposium on Poultry Nutrition; 2013.
Ruiz-Hernandez R, Mwangi W, Peroval M, Sadeyen J-R, Ascough S, Balkissoon D, et al. Host genetics determine susceptibility to avian influenza infection and transmission dynamics. Sci Rep. 2016;6(1):26787. https://www.nature.com/articles/srep26787 .
doi: 10.1038/srep26787 pubmed: 27279280 pmcid: 4899695
Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S. Cutting edge: impaired Toll-like receptor expression and function in aging. J Immunol. 2002;169(9):4697–701. https://doi.org/10.4049/jimmunol.169.9.4697 .
doi: 10.4049/jimmunol.169.9.4697 pubmed: 12391175
Boehmer ED, Meehan MJ, Cutro BT, Kovacs EJ. Aging negatively skews macrophage TLR2-and TLR4-mediated pro-inflammatory responses without affecting the IL-2-stimulated pathway. Mech Age Dev. 2005;126(12):1305–13. https://doi.org/10.1016/j.mad.2005.07.009 .
doi: 10.1016/j.mad.2005.07.009
Pantin-Jackwood MJ, Smith DM, Wasilenko JL, Cagle C, Shepherd E, Sarmento L, et al. Effect of age on the pathogenesis and innate immune responses in Pekin ducks infected with different H5N1 highly pathogenic avian influenza viruses. Virus Res. 2012;167(2):196–206. https://doi.org/10.1016/j.virusres.2012.04.015 .
doi: 10.1016/j.virusres.2012.04.015 pubmed: 22595263
Nguyen GT, Rauw F, Steensels M, Ingrao F, Bonfante F, Davidson I, et al. Study of the underlying mechanisms and consequences of pathogenicity differences between two in vitro selected G1-H9N2 clones originating from a single isolate. Vet Res. 2019;50:1–12. https://doi.org/10.1186/s13567-019-0635-1 .
doi: 10.1186/s13567-019-0635-1
Nang NT, Lee JS, Song BM, Kang YM, Kim HS, Seo SH. Induction of inflammatory cytokines and toll-like receptors in chickens infected with avian H9N2 influenza virus. Vet Res. 2011;42:1–8. https://doi.org/10.1186/1297-9716-42-64 .
doi: 10.1186/1297-9716-42-64
Kaiser L, Fritz RS, Straus SE, Gubareva L, Hayden FG. Symptom pathogenesis during acute influenza: interleukin-6 and other cytokine responses. J Med Virol. 2001;64(3):262–8. https://doi.org/10.1002/jmv.1045 .
doi: 10.1002/jmv.1045 pubmed: 11424113
Reemers SS, van Haarlem DA, Groot Koerkamp MJ, Vervelde L. Differential gene-expression and host-response profiles against avian influenza virus within the chicken lung due to anatomy and airflow. J Gen Virol. 2009;90(9):2134–46. https://doi.org/10.1099/vir.0.012401-0 .
doi: 10.1099/vir.0.012401-0 pubmed: 19494054
Jiang H, Yu K, Kapczynski DR. Transcription factor regulation and cytokine expression following in vitro infection of primary chicken cell culture with low pathogenic avian influenza virus. Virol J. 2013;10:1–8.
doi: 10.1186/1743-422X-10-342
Westenius V, Mäkelä SM, Ziegler T, Julkunen I, Österlund P. Efficient replication and strong induction of innate immune responses by H9N2 avian influenza virus in human dendritic cells. Virology. 2014;471:38–48.
doi: 10.1016/j.virol.2014.10.002 pubmed: 25461529
Chen X, Liu S, Goraya MU, Maarouf M, Huang S, Chen J-L. Host immune response to influenza A virus infection. Front Immunol. 2018;9:320. https://doi.org/10.3389/fimmu.2018.00320 .
doi: 10.3389/fimmu.2018.00320 pubmed: 29556226 pmcid: 5845129
Fleming-Canepa X, Aldridge JR Jr, Canniff L, Kobewka M, Jax E, Webster RG, et al. Duck innate immune responses to high and low pathogenicity H5 avian influenza viruses. Vet Microbiol. 2019;228:101–11. https://doi.org/10.1016/j.vetmic.2018.11.018 .
doi: 10.1016/j.vetmic.2018.11.018 pubmed: 30593354
Richard M, Graaf Md, Herfst S. Avian influenza A viruses: from zoonosis to pandemic. Future Virol. 2014;9(5):513–24. https://doi.org/10.2217/fvl.14.30 .
doi: 10.2217/fvl.14.30 pubmed: 25214882 pmcid: 4157675
Lindh E, Ek-Kommonen C, Väänänen V-M, Vaheri A, Vapalahti O, Huovilainen A. Molecular epidemiology of H9N2 influenza viruses in Northern Europe. Vet Microbiol. 2014;172(3–4):548–54. https://doi.org/10.1016/j.vetmic.2014.06.020 .
doi: 10.1016/j.vetmic.2014.06.020 pubmed: 25042528
Kobasa D, Takada A, Shinya K, Hatta M, Halfmann P, Theriault S, et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature. 2004;431(7009):703–7. https://doi.org/10.1038/nature02951 .
doi: 10.1038/nature02951 pubmed: 15470432

Auteurs

Ismail Hossain (I)

Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Rupaida Akter Shila (RA)

Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Md Mohi Uddin (MM)

Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Emdadul Haque Chowdhury (EH)

Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Rokshana Parvin (R)

Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh.

Jahan Ara Begum (JA)

Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh. jahan.begum@bau.edu.bd.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH