Advances in retinal pigment epithelial cell transplantation for retinal degenerative diseases.
Bruch’s membrane
Cell therapy
Cell transplantation
Macular degeneration
Outer blood-retina barrier
Retinal pigment epithelium
Tissue engineering
Journal
Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
29
07
2024
accepted:
22
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Retinal degenerative diseases are a leading cause of vision loss and blindness globally, impacting millions. These diseases result from progressive damage to retinal pigment epithelial (RPE) cells for which no curative or palliative treatments exist. Cell therapy, particularly RPE transplantation, has emerged as a promising strategy for vision restoration. This review provides a comprehensive overview of the recent advancements in clinical trials related to RPE transplantation. We discuss scaffold-free and scaffold-based approaches, including RPE cell suspensions and pre-organized RPE monolayers on biomaterial scaffolds. Key considerations, such as the form and preparation of RPE implants, delivery devices, strategies, and biodegradability of scaffolds, are examined. The article also explores the challenges and opportunities in RPE scaffold development, emphasising the crucial need for functional integration, immunomodulation, and long-term biocompatibility to ensure therapeutic efficacy. We also highlight ongoing efforts to optimise RPE transplantation methods and their potential to address retinal degenerative diseases.
Identifiants
pubmed: 39482729
doi: 10.1186/s13287-024-04007-5
pii: 10.1186/s13287-024-04007-5
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
390Subventions
Organisme : National Medical Research Council
ID : MOH-001357-00
Organisme : National Additive Manufacturing Innovation Cluster
ID : M22N2K0007
Organisme : National Research Foundation Singapore
ID : NRF-CRP21-2018-00103
Informations de copyright
© 2024. The Author(s).
Références
Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.
pubmed: 25104651
doi: 10.1016/S2214-109X(13)70145-1
Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101:25–30.
pubmed: 27491360
doi: 10.1136/bjophthalmol-2016-308823
Chaumet-Riffaud AE, Chaumet-Riffaud P, Cariou A, Devisme C, Audo I, Sahel J-A, et al. Impact of retinitis pigmentosa on quality of life, mental health, and employment among young adults. Am J Ophthalmol. 2017;177:169–74.
pubmed: 28237413
doi: 10.1016/j.ajo.2017.02.016
Fleckenstein M, Keenan TD, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021;7:31.
pubmed: 33958600
doi: 10.1038/s41572-021-00265-2
Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.
pubmed: 25458728
doi: 10.1016/S0140-6736(14)61376-3
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.
pubmed: 28296613
doi: 10.1056/NEJMoa1608368
Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20.
pubmed: 22281388
doi: 10.1016/S0140-6736(12)60028-2
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36:328–37.
pubmed: 29553577
doi: 10.1038/nbt.4114
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater. 2024;31:151–77.
pubmed: 37637086
Liu H, Jing L, Sun J, Huang D. An overview of scaffolds for retinal pigment epithelium research. Procedia Manuf. 2021;53:492–9.
doi: 10.1016/j.promfg.2021.06.051
Yang S, Zhou J, Li D. Functions and diseases of the retinal pigment epithelium. Front Pharmacol. 2021;12:727870.
pubmed: 34393803
pmcid: 8355697
doi: 10.3389/fphar.2021.727870
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Th. 2021;219:107707.
doi: 10.1016/j.pharmthera.2020.107707
Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.
pubmed: 15987797
doi: 10.1152/physrev.00021.2004
Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB, et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9:e144–60.
doi: 10.1016/S2214-109X(20)30489-7
Newton F, Megaw R. Mechanisms of photoreceptor death in retinitis pigmentosa. Genes. 2020;11:1120.
pubmed: 32987769
pmcid: 7598671
doi: 10.3390/genes11101120
Cornish KS, Ho J, Downes S, Scott NW, Bainbridge J, Lois N. The epidemiology of Stargardt disease in the United Kingdom. Ophthalmol Retina. 2017;1:508–13.
doi: 10.1016/j.oret.2017.03.001
Cremers FP, Lee W, Collin RW, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res. 2020;79:100861.
pubmed: 32278709
pmcid: 7544654
doi: 10.1016/j.preteyeres.2020.100861
Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A. 2002;99:1580–5.
pubmed: 11818560
pmcid: 122233
doi: 10.1073/pnas.032662199
Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, et al. In Vitro and In Vivo Characterization of Pigment Epithelial Cells Differentiated from Primate Embryonic Stem Cells. Invest Ophthalmol Vis Sci. 2004;45:1020–5.
pubmed: 14985325
doi: 10.1167/iovs.03-1034
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of Functional Retinal Pigmented Epithelium from Induced Pluripotent Stem Cells. Stem Cells. 2009;27:2427–34.
pubmed: 19658190
doi: 10.1002/stem.189
Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106:16698–703.
pubmed: 19706890
pmcid: 2757802
doi: 10.1073/pnas.0905245106
Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, et al. Directed Differentiation of Human Embryonic Stem Cells into Functional Retinal Pigment Epithelium Cells. Cell Stem Cell. 2009;5:396–408.
pubmed: 19796620
doi: 10.1016/j.stem.2009.07.002
Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, Hinton DR. A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc. 2009;4:662–73.
pubmed: 19373231
pmcid: 2688697
doi: 10.1038/nprot.2009.33
Regha K, Bhargava M, Al-Mubaarak A, Chai C, Parikh BH, Liu Z, et al. Customized strategies for high-yield purification of retinal pigment epithelial cells differentiated from different stem cell sources. Sci Rep. 2022;12:15563.
pubmed: 36114268
pmcid: 9481580
doi: 10.1038/s41598-022-19777-2
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10:eaao4097.
pubmed: 29618560
doi: 10.1126/scitranslmed.aao4097
Sugita S, Futatsugi Y, Ishida M, Edo A, Takahashi M. Retinal pigment epithelial cells derived from induced pluripotent stem (iPS) cells suppress or activate T cells via costimulatory signals. Int J Mol Sci. 2020;21:6507.
pubmed: 32899567
pmcid: 7554762
doi: 10.3390/ijms21186507
Singh RB, Blanco T, Mittal SK, Alemi H, Chauhan SK, Chen Y, et al. Pigment epithelium–derived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease. Am J Pathol. 2021;191:720–9.
pubmed: 33453179
pmcid: 8027920
doi: 10.1016/j.ajpath.2021.01.003
Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Rep. 2016;7:619–34.
doi: 10.1016/j.stemcr.2016.08.011
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res. 2024;239:109770.
pubmed: 38145794
doi: 10.1016/j.exer.2023.109770
Fanelli G, Romano M, Lombardi G, Sacks SH. Soluble Collectin 11 (CL-11) Acts as an immunosuppressive molecule potentially used by stem cell-derived retinal epithelial cells to modulate T cell response. Cells. 2023;12:1805.
pubmed: 37443840
pmcid: 10341155
doi: 10.3390/cells12131805
Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmol. 2018;125:1765–75.
doi: 10.1016/j.ophtha.2018.04.037
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.
pubmed: 18035408
doi: 10.1016/j.cell.2007.11.019
Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther. 2019;10:341.
pubmed: 31753034
pmcid: 6873767
doi: 10.1186/s13287-019-1455-y
Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci. 2016;57:ORSFc1–9.
pubmed: 27116660
doi: 10.1167/iovs.15-18681
Banin E, Barak A, Boyer DS, Ehrlich R, Ho A, Jaouni T, et al. Exploratory optical coherence tomography (OCT) analysis in patients with geographic atrophy (GA) treated by OpRegen: Results from the Phase 1/2a trial. Investig Ophthalmol Vis Sci. 2023;64:2826–2826.
Takagi S, Mandai M, Gocho K, Hirami Y, Yamamoto M, Fujihara M, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina. 2019;3:850–9.
pubmed: 31248784
doi: 10.1016/j.oret.2019.04.021
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, et al. One-year follow-up in a phase 1/2a clinical trial of an allogeneic rpe cell bioengineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol. 2021;10:13–13.
pubmed: 34613357
pmcid: 8496407
doi: 10.1167/tvst.10.10.13
Humayun MS, Clegg DO, Dayan MS, Kashani AH, Rahhal FM, Avery RL, et al. Long-term follow-up of subjects in a phase 1/2a clinical trial of stem cell-derived bioengineered retinal pigment epithelium implant for geographic atrophy. Ophthalmol. 2024;131:682–91.
doi: 10.1016/j.ophtha.2023.12.028
Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Sheets Aiming for Clinical Application. Stem Cell Rep. 2014;2:205–18.
doi: 10.1016/j.stemcr.2013.12.007
Nishida M, Tanaka Y, Tanaka Y, Amaya S, Tanaka N, Uyama H, et al. Human iPS cell derived RPE strips for secure delivery of graft cells at a target place with minimal surgical invasion. Sci Rep. 2021;11:21421.
pubmed: 34728664
pmcid: 8563929
doi: 10.1038/s41598-021-00703-x
Brandl C, Brücklmayer C, Günther F, Zimmermann ME, Küchenhoff H, Helbig H, et al. Retinal layer thicknesses in early age-related macular degeneration: results from the German AugUR study. Invest Ophthmol Vis Sci. 2019;60:1581–94.
doi: 10.1167/iovs.18-25332
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11:eaat5580.
pubmed: 30651323
pmcid: 8784963
doi: 10.1126/scitranslmed.aat5580
Ben M’, Bertin S, Brazhnikova E, Jaillard C, Habeler W, Plancheron A, et al. Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents. Biomaterials. 2020;230:119603.
doi: 10.1016/j.biomaterials.2019.119603
Zhang S, Ye K, Gao G, Song X, Xu P, Zeng J, et al. Amniotic membrane enhances the characteristics and function of stem cell-derived retinal pigment epithelium sheets by inhibiting the epithelial–mesenchymal transition. Acta Biomater. 2022;151:183–96.
pubmed: 35933105
doi: 10.1016/j.actbio.2022.07.064
Shadforth AMA, Suzuki S, Theodoropoulos C, Richardson NA, Chirila TV, Harkin DG. A Bruch’s membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro. J Tissue Eng Regen Med. 2017;11:1915–24.
pubmed: 26449636
doi: 10.1002/term.2089
Sugino IK, Rapista A, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, et al. A method to enhance cell survival on bruch’s membrane in eyes affected by age and age-related macular degeneration. Invest Ophthmol Vis Sci. 2011;52:9598–609.
doi: 10.1167/iovs.11-8400
Warnke PH, Alamein M, Skabo S, Stephens S, Bourke R, Heiner P, et al. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013;9:9414–22.
pubmed: 23917149
doi: 10.1016/j.actbio.2013.07.029
Shadforth AMA, George KA, Kwan AS, Chirila TV, Harkin DG. The cultivation of human retinal pigment epithelial cells on Bombyx mori silk fibroin. Biomaterials. 2012;33:4110–7.
pubmed: 22406408
doi: 10.1016/j.biomaterials.2012.02.040
Suzuki S, Shadforth AMA, McLenachan S, Zhang D, Chen S-C, Walshe J, et al. Optimization of silk fibroin membranes for retinal implantation. Mater Sci Eng C. 2019;105:110131.
doi: 10.1016/j.msec.2019.110131
Liu Z, Ilmarinen T, Tan GSW, Hongisto H, Wong EYM, Tsai ASH, et al. Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model. Stem Cell Res Ther. 2021;12:423.
pubmed: 34315534
pmcid: 8314642
doi: 10.1186/s13287-021-02395-6
Stanzel BV, Liu Z, Brinken R, Braun N, Holz FG, Eter N. Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation. Invest Ophthalmol Vis Sci. 2012;53:490–500.
pubmed: 22167099
doi: 10.1167/iovs.11-8260
Kolb H, Nelson RF, Ahnelt PK, Ortuño-Lizarán I, Cuenca N. The architecture of the human fovea. Webvision: The Organization of the Retina and Visual System; 2020.
Kamao H, Mandai M, Ohashi W, Hirami Y, Kurimoto Y, Kiryu J, et al. Evaluation of the surgical device and procedure for extracellular matrix–scaffold–supported human iPSC–derived retinal pigment epithelium cell sheet transplantation. Invest Ophthalmol Vis Sci. 2017;58:211–20.
pubmed: 28114582
doi: 10.1167/iovs.16-19778
Liu Z, Yu N, Holz FG, Yang F, Stanzel BV. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837–50.
pubmed: 24439407
doi: 10.1016/j.biomaterials.2013.12.069
Liu H, Wu F, Chen R, Chen Y, Yao K, Liu Z, et al. Electrohydrodynamic jet-printed ultrathin polycaprolactone scaffolds mimicking Bruch’s membrane for retinal pigment epithelial tissue engineering. Int J Bioprint. 2022;8:550.
pubmed: 36105130
pmcid: 9468949
doi: 10.18063/ijb.v8i3.550
Lu B, Zhu D, Hinton D, Humayun MS, Tai Y-C. Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices. 2012;14:659–67.
pubmed: 22391881
doi: 10.1007/s10544-012-9645-8
Monville C, Bertin S, Devisme C, Brazhnikova E, Jaillard C, Walter H, et al. Phase I/II open-label study of implantation into one eye of hESC-derived RPE in patients with retinitis pigmentosa due to monogenic mutation: first safety results. Invest Ophthalmol Vis Sci. 2023;64:3829–3829.
Ben M’, Habeler W, Plancheron A, Jarraya M, Regent F, Terray A, et al. Human ESC–derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med. 2017;9:eaai7471.
doi: 10.1126/scitranslmed.aai7471
Caporossi T, Tartaro R, Giansanti F, Rizzo S. The amniotic membrane for retinal pathologies. Insights on the surgical techniques. Graefe’s Archive Clin Experimental Ophthalmol. 2020;258:1347–9.
doi: 10.1007/s00417-020-04665-0
Gu J, Wang Y, Cui Z, Li H, Li S, Yang X, et al. The construction of retinal pigment epithelium sheets with enhanced characteristics and cilium assembly using iPS conditioned medium and small incision lenticule extraction derived lenticules. Acta Biomater. 2019;92:115–31.
pubmed: 31075513
doi: 10.1016/j.actbio.2019.05.017
Galloway CA, Dalvi S, Shadforth AMA, Suzuki S, Wilson M, Kuai D, et al. Characterization of human iPSC-RPE on a prosthetic Bruch’s membrane manufactured from silk fibroin. Invest Ophthalmol Vis Sci. 2018;59:2792–800.
pubmed: 30025113
pmcid: 5989661
doi: 10.1167/iovs.17-23157
Liu H, Vijayavenkataraman S, Wang D, Jing L, Sun J, He K. Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds. Int J Bioprint. 2017;3:009.
pubmed: 33094184
pmcid: 7575636
doi: 10.18063/IJB.2017.01.009
Griffin DR, Archang MM, Kuan C-H, Weaver WM, Weinstein JS, Feng AC, et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat Mater. 2021;20:560–9.
pubmed: 33168979
doi: 10.1038/s41563-020-00844-w
Won J-E, Lee YS, Park J-H, Lee J-H, Shin YS, Kim C-H, et al. Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials. 2020;227:119548.
pubmed: 31670033
doi: 10.1016/j.biomaterials.2019.119548
Song MJ, Quinn R, Nguyen E, Hampton C, Sharma R, Park TS, et al. Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Nat Methods. 2023;20:149–61.
pubmed: 36550275
doi: 10.1038/s41592-022-01701-1
Chuang J-Z, Yang N, Nakajima N, Otsu W, Fu C, Yang HH, et al. Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nat Commun. 2022;13:374.
pubmed: 35042858
pmcid: 8766482
doi: 10.1038/s41467-021-27935-9
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, et al. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell. 2021;28:846–e8628.
pubmed: 33784497
pmcid: 8520418
doi: 10.1016/j.stem.2021.02.006
Chung M, Lee S, Lee BJ, Son K, Jeon NL, Kim JH. Wet-AMD on a Chip: Modeling Outer Blood-Retinal Barrier In Vitro. Adv Healthc Mater. 2018;7:1700028.
doi: 10.1002/adhm.201700028
Lee I-K, Ludwig AL, Phillips MJ, Lee J, Xie R, Sajdak BS, et al. Ultrathin micromolded 3D scaffolds for high-density photoreceptor layer reconstruction. Sci Adv. 2021;7:eabf0344.
pubmed: 33883135
pmcid: 8059936
doi: 10.1126/sciadv.abf0344
Jung YH, Phillips MJ, Lee J, Xie R, Ludwig AL, Chen G, et al. 3D microstructured scaffolds to support photoreceptor polarization and maturation. Adv Mater. 2018;30:e1803550.
pubmed: 30109736
doi: 10.1002/adma.201803550
Snodderly DM, Sandstrom MM, Leung IY-F, Zucker CL, Neuringer M. Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Invest Ophthalmol Vis Sci. 2002;43:2815–8.
pubmed: 12202496
Akhtar T, Xie H, Khan MI, Zhao H, Bao J, Zhang M, et al. Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res. 2019;39:101491.
pubmed: 31326746
doi: 10.1016/j.scr.2019.101491
Singh D, Chen X, Xia T, Ghiassi-Nejad M, Tainsh L, Adelman RA, et al. Partially differentiated neuroretinal cells promote maturation of the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2020;61:9–9.
pubmed: 33151282
pmcid: 7671856
doi: 10.1167/iovs.61.13.9
Achberger K, Probst C, Haderspeck J, Bolz S, Rogal J, Chuchuy J et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife. 2019;8.
Liu Z, Liow SS, Lai SL, Alli-Shaik A, Holder GE, Parikh BH, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade. Nat Biomed Eng. 2019;3:598–610.
pubmed: 30962587
doi: 10.1038/s41551-019-0382-7
Zhang K, Liu Z, Lin Q, Boo YJ, Ow V, Zhao X, et al. Injectable PTHF-based thermogelling polyurethane implants for long-term intraocular application. Biomater Res. 2022;26:70.
pubmed: 36461130
pmcid: 9716749
doi: 10.1186/s40824-022-00316-z
Parikh BH, Liu Z, Blakeley P, Lin Q, Singh M, Ong JY, et al. A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat Commun. 2022;13:2796.
pubmed: 35589753
pmcid: 9119969
doi: 10.1038/s41467-022-30474-6
Campochiaro PA, Avery R, Brown DM, Heier JS, Ho AC, Huddleston SM, et al. Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: a phase 1/2a dose-escalation study. Lancet. 2024;403:1563–73.
pubmed: 38554726
doi: 10.1016/S0140-6736(24)00310-6
Zhao X, Seah I, Xue K, Wong W, Tan QSW, Ma X, et al. Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv Mater. 2022;34:e2108360.
pubmed: 34726299
doi: 10.1002/adma.202108360
Xue K, Zhao X, Zhang Z, Qiu B, Tan QSW, Ong KH, et al. Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomater Sci. 2019;7:4603–14.
pubmed: 31436780
doi: 10.1039/C9BM01049A
Kharbikar BN, Mohindra P, Desai TA. Biomaterials to enhance stem cell transplantation. Cell Stem Cell. 2022;29:692–721.