Advances in retinal pigment epithelial cell transplantation for retinal degenerative diseases.

Bruch’s membrane Cell therapy Cell transplantation Macular degeneration Outer blood-retina barrier Retinal pigment epithelium Tissue engineering

Journal

Stem cell research & therapy
ISSN: 1757-6512
Titre abrégé: Stem Cell Res Ther
Pays: England
ID NLM: 101527581

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 29 07 2024
accepted: 22 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Retinal degenerative diseases are a leading cause of vision loss and blindness globally, impacting millions. These diseases result from progressive damage to retinal pigment epithelial (RPE) cells for which no curative or palliative treatments exist. Cell therapy, particularly RPE transplantation, has emerged as a promising strategy for vision restoration. This review provides a comprehensive overview of the recent advancements in clinical trials related to RPE transplantation. We discuss scaffold-free and scaffold-based approaches, including RPE cell suspensions and pre-organized RPE monolayers on biomaterial scaffolds. Key considerations, such as the form and preparation of RPE implants, delivery devices, strategies, and biodegradability of scaffolds, are examined. The article also explores the challenges and opportunities in RPE scaffold development, emphasising the crucial need for functional integration, immunomodulation, and long-term biocompatibility to ensure therapeutic efficacy. We also highlight ongoing efforts to optimise RPE transplantation methods and their potential to address retinal degenerative diseases.

Identifiants

pubmed: 39482729
doi: 10.1186/s13287-024-04007-5
pii: 10.1186/s13287-024-04007-5
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

390

Subventions

Organisme : National Medical Research Council
ID : MOH-001357-00
Organisme : National Additive Manufacturing Innovation Cluster
ID : M22N2K0007
Organisme : National Research Foundation Singapore
ID : NRF-CRP21-2018-00103

Informations de copyright

© 2024. The Author(s).

Références

Wong WL, Su X, Li X, Cheung CMG, Klein R, Cheng C-Y, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2:e106–16.
pubmed: 25104651 doi: 10.1016/S2214-109X(13)70145-1
Tanna P, Strauss RW, Fujinami K, Michaelides M. Stargardt disease: clinical features, molecular genetics, animal models and therapeutic options. Br J Ophthalmol. 2017;101:25–30.
pubmed: 27491360 doi: 10.1136/bjophthalmol-2016-308823
Chaumet-Riffaud AE, Chaumet-Riffaud P, Cariou A, Devisme C, Audo I, Sahel J-A, et al. Impact of retinitis pigmentosa on quality of life, mental health, and employment among young adults. Am J Ophthalmol. 2017;177:169–74.
pubmed: 28237413 doi: 10.1016/j.ajo.2017.02.016
Fleckenstein M, Keenan TD, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, Klaver CC, et al. Age-related macular degeneration. Nat Rev Dis Primers. 2021;7:31.
pubmed: 33958600 doi: 10.1038/s41572-021-00265-2
Schwartz SD, Regillo CD, Lam BL, Eliott D, Rosenfeld PJ, Gregori NZ, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt’s macular dystrophy: follow-up of two open-label phase 1/2 studies. Lancet. 2015;385:509–16.
pubmed: 25458728 doi: 10.1016/S0140-6736(14)61376-3
Mandai M, Watanabe A, Kurimoto Y, Hirami Y, Morinaga C, Daimon T, et al. Autologous induced stem-cell–derived retinal cells for macular degeneration. N Engl J Med. 2017;376:1038–46.
pubmed: 28296613 doi: 10.1056/NEJMoa1608368
Schwartz SD, Hubschman J-P, Heilwell G, Franco-Cardenas V, Pan CK, Ostrick RM, et al. Embryonic stem cell trials for macular degeneration: a preliminary report. Lancet. 2012;379:713–20.
pubmed: 22281388 doi: 10.1016/S0140-6736(12)60028-2
da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell–derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36:328–37.
pubmed: 29553577 doi: 10.1038/nbt.4114
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater. 2024;31:151–77.
pubmed: 37637086
Liu H, Jing L, Sun J, Huang D. An overview of scaffolds for retinal pigment epithelium research. Procedia Manuf. 2021;53:492–9.
doi: 10.1016/j.promfg.2021.06.051
Yang S, Zhou J, Li D. Functions and diseases of the retinal pigment epithelium. Front Pharmacol. 2021;12:727870.
pubmed: 34393803 pmcid: 8355697 doi: 10.3389/fphar.2021.727870
Tian X, Cui Z, Liu S, Zhou J, Cui R. Melanosome transport and regulation in development and disease. Pharmacol Th. 2021;219:107707.
doi: 10.1016/j.pharmthera.2020.107707
Strauss O. The retinal pigment epithelium in visual function. Physiol Rev. 2005;85:845–81.
pubmed: 15987797 doi: 10.1152/physrev.00021.2004
Steinmetz JD, Bourne RRA, Briant PS, Flaxman SR, Taylor HRB, Jonas JB, et al. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: the Right to Sight: an analysis for the Global Burden of Disease Study. Lancet Glob Health. 2021;9:e144–60.
doi: 10.1016/S2214-109X(20)30489-7
Newton F, Megaw R. Mechanisms of photoreceptor death in retinitis pigmentosa. Genes. 2020;11:1120.
pubmed: 32987769 pmcid: 7598671 doi: 10.3390/genes11101120
Cornish KS, Ho J, Downes S, Scott NW, Bainbridge J, Lois N. The epidemiology of Stargardt disease in the United Kingdom. Ophthalmol Retina. 2017;1:508–13.
doi: 10.1016/j.oret.2017.03.001
Cremers FP, Lee W, Collin RW, Allikmets R. Clinical spectrum, genetic complexity and therapeutic approaches for retinal disease caused by ABCA4 mutations. Prog Retin Eye Res. 2020;79:100861.
pubmed: 32278709 pmcid: 7544654 doi: 10.1016/j.preteyeres.2020.100861
Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, et al. Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A. 2002;99:1580–5.
pubmed: 11818560 pmcid: 122233 doi: 10.1073/pnas.032662199
Haruta M, Sasai Y, Kawasaki H, Amemiya K, Ooto S, Kitada M, et al. In Vitro and In Vivo Characterization of Pigment Epithelial Cells Differentiated from Primate Embryonic Stem Cells. Invest Ophthalmol Vis Sci. 2004;45:1020–5.
pubmed: 14985325 doi: 10.1167/iovs.03-1034
Buchholz DE, Hikita ST, Rowland TJ, Friedrich AM, Hinman CR, Johnson LV, et al. Derivation of Functional Retinal Pigmented Epithelium from Induced Pluripotent Stem Cells. Stem Cells. 2009;27:2427–34.
pubmed: 19658190 doi: 10.1002/stem.189
Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, et al. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A. 2009;106:16698–703.
pubmed: 19706890 pmcid: 2757802 doi: 10.1073/pnas.0905245106
Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, et al. Directed Differentiation of Human Embryonic Stem Cells into Functional Retinal Pigment Epithelium Cells. Cell Stem Cell. 2009;5:396–408.
pubmed: 19796620 doi: 10.1016/j.stem.2009.07.002
Sonoda S, Spee C, Barron E, Ryan SJ, Kannan R, Hinton DR. A protocol for the culture and differentiation of highly polarized human retinal pigment epithelial cells. Nat Protoc. 2009;4:662–73.
pubmed: 19373231 pmcid: 2688697 doi: 10.1038/nprot.2009.33
Regha K, Bhargava M, Al-Mubaarak A, Chai C, Parikh BH, Liu Z, et al. Customized strategies for high-yield purification of retinal pigment epithelial cells differentiated from different stem cell sources. Sci Rep. 2022;12:15563.
pubmed: 36114268 pmcid: 9481580 doi: 10.1038/s41598-022-19777-2
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Dang W, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration. Sci Transl Med. 2018;10:eaao4097.
pubmed: 29618560 doi: 10.1126/scitranslmed.aao4097
Sugita S, Futatsugi Y, Ishida M, Edo A, Takahashi M. Retinal pigment epithelial cells derived from induced pluripotent stem (iPS) cells suppress or activate T cells via costimulatory signals. Int J Mol Sci. 2020;21:6507.
pubmed: 32899567 pmcid: 7554762 doi: 10.3390/ijms21186507
Singh RB, Blanco T, Mittal SK, Alemi H, Chauhan SK, Chen Y, et al. Pigment epithelium–derived factor enhances the suppressive phenotype of regulatory T cells in a murine model of dry eye disease. Am J Pathol. 2021;191:720–9.
pubmed: 33453179 pmcid: 8027920 doi: 10.1016/j.ajpath.2021.01.003
Sugita S, Iwasaki Y, Makabe K, Kimura T, Futagami T, Suegami S, et al. Lack of T Cell Response to iPSC-derived retinal pigment epithelial cells from HLA homozygous donors. Stem Cell Rep. 2016;7:619–34.
doi: 10.1016/j.stemcr.2016.08.011
Zhao Q, Lai K. Role of immune inflammation regulated by macrophage in the pathogenesis of age-related macular degeneration. Exp Eye Res. 2024;239:109770.
pubmed: 38145794 doi: 10.1016/j.exer.2023.109770
Fanelli G, Romano M, Lombardi G, Sacks SH. Soluble Collectin 11 (CL-11) Acts as an immunosuppressive molecule potentially used by stem cell-derived retinal epithelial cells to modulate T cell response. Cells. 2023;12:1805.
pubmed: 37443840 pmcid: 10341155 doi: 10.3390/cells12131805
Mehat MS, Sundaram V, Ripamonti C, Robson AG, Smith AJ, Borooah S, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration. Ophthalmol. 2018;125:1765–75.
doi: 10.1016/j.ophtha.2018.04.037
Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.
pubmed: 18035408 doi: 10.1016/j.cell.2007.11.019
Moradi S, Mahdizadeh H, Šarić T, Kim J, Harati J, Shahsavarani H, et al. Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Res Ther. 2019;10:341.
pubmed: 31753034 pmcid: 6873767 doi: 10.1186/s13287-019-1455-y
Schwartz SD, Tan G, Hosseini H, Nagiel A. Subretinal transplantation of embryonic stem cell–derived retinal pigment epithelium for the treatment of macular degeneration: an assessment at 4 years. Invest Ophthalmol Vis Sci. 2016;57:ORSFc1–9.
pubmed: 27116660 doi: 10.1167/iovs.15-18681
Banin E, Barak A, Boyer DS, Ehrlich R, Ho A, Jaouni T, et al. Exploratory optical coherence tomography (OCT) analysis in patients with geographic atrophy (GA) treated by OpRegen: Results from the Phase 1/2a trial. Investig Ophthalmol Vis Sci. 2023;64:2826–2826.
Takagi S, Mandai M, Gocho K, Hirami Y, Yamamoto M, Fujihara M, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina. 2019;3:850–9.
pubmed: 31248784 doi: 10.1016/j.oret.2019.04.021
Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, et al. One-year follow-up in a phase 1/2a clinical trial of an allogeneic rpe cell bioengineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol. 2021;10:13–13.
pubmed: 34613357 pmcid: 8496407 doi: 10.1167/tvst.10.10.13
Humayun MS, Clegg DO, Dayan MS, Kashani AH, Rahhal FM, Avery RL, et al. Long-term follow-up of subjects in a phase 1/2a clinical trial of stem cell-derived bioengineered retinal pigment epithelium implant for geographic atrophy. Ophthalmol. 2024;131:682–91.
doi: 10.1016/j.ophtha.2023.12.028
Kamao H, Mandai M, Okamoto S, Sakai N, Suga A, Sugita S, et al. Characterization of Human Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium Cell Sheets Aiming for Clinical Application. Stem Cell Rep. 2014;2:205–18.
doi: 10.1016/j.stemcr.2013.12.007
Nishida M, Tanaka Y, Tanaka Y, Amaya S, Tanaka N, Uyama H, et al. Human iPS cell derived RPE strips for secure delivery of graft cells at a target place with minimal surgical invasion. Sci Rep. 2021;11:21421.
pubmed: 34728664 pmcid: 8563929 doi: 10.1038/s41598-021-00703-x
Brandl C, Brücklmayer C, Günther F, Zimmermann ME, Küchenhoff H, Helbig H, et al. Retinal layer thicknesses in early age-related macular degeneration: results from the German AugUR study. Invest Ophthmol Vis Sci. 2019;60:1581–94.
doi: 10.1167/iovs.18-25332
Sharma R, Khristov V, Rising A, Jha BS, Dejene R, Hotaling N, et al. Clinical-grade stem cell–derived retinal pigment epithelium patch rescues retinal degeneration in rodents and pigs. Sci Transl Med. 2019;11:eaat5580.
pubmed: 30651323 pmcid: 8784963 doi: 10.1126/scitranslmed.aat5580
Ben M’, Bertin S, Brazhnikova E, Jaillard C, Habeler W, Plancheron A, et al. Clinical-grade production and safe delivery of human ESC derived RPE sheets in primates and rodents. Biomaterials. 2020;230:119603.
doi: 10.1016/j.biomaterials.2019.119603
Zhang S, Ye K, Gao G, Song X, Xu P, Zeng J, et al. Amniotic membrane enhances the characteristics and function of stem cell-derived retinal pigment epithelium sheets by inhibiting the epithelial–mesenchymal transition. Acta Biomater. 2022;151:183–96.
pubmed: 35933105 doi: 10.1016/j.actbio.2022.07.064
Shadforth AMA, Suzuki S, Theodoropoulos C, Richardson NA, Chirila TV, Harkin DG. A Bruch’s membrane substitute fabricated from silk fibroin supports the function of retinal pigment epithelial cells in vitro. J Tissue Eng Regen Med. 2017;11:1915–24.
pubmed: 26449636 doi: 10.1002/term.2089
Sugino IK, Rapista A, Sun Q, Wang J, Nunes CF, Cheewatrakoolpong N, et al. A method to enhance cell survival on bruch’s membrane in eyes affected by age and age-related macular degeneration. Invest Ophthmol Vis Sci. 2011;52:9598–609.
doi: 10.1167/iovs.11-8400
Warnke PH, Alamein M, Skabo S, Stephens S, Bourke R, Heiner P, et al. Primordium of an artificial Bruch’s membrane made of nanofibers for engineering of retinal pigment epithelium cell monolayers. Acta Biomater. 2013;9:9414–22.
pubmed: 23917149 doi: 10.1016/j.actbio.2013.07.029
Shadforth AMA, George KA, Kwan AS, Chirila TV, Harkin DG. The cultivation of human retinal pigment epithelial cells on Bombyx mori silk fibroin. Biomaterials. 2012;33:4110–7.
pubmed: 22406408 doi: 10.1016/j.biomaterials.2012.02.040
Suzuki S, Shadforth AMA, McLenachan S, Zhang D, Chen S-C, Walshe J, et al. Optimization of silk fibroin membranes for retinal implantation. Mater Sci Eng C. 2019;105:110131.
doi: 10.1016/j.msec.2019.110131
Liu Z, Ilmarinen T, Tan GSW, Hongisto H, Wong EYM, Tsai ASH, et al. Submacular integration of hESC-RPE monolayer xenografts in a surgical non-human primate model. Stem Cell Res Ther. 2021;12:423.
pubmed: 34315534 pmcid: 8314642 doi: 10.1186/s13287-021-02395-6
Stanzel BV, Liu Z, Brinken R, Braun N, Holz FG, Eter N. Subretinal delivery of ultrathin rigid-elastic cell carriers using a metallic shooter instrument and biodegradable hydrogel encapsulation. Invest Ophthalmol Vis Sci. 2012;53:490–500.
pubmed: 22167099 doi: 10.1167/iovs.11-8260
Kolb H, Nelson RF, Ahnelt PK, Ortuño-Lizarán I, Cuenca N. The architecture of the human fovea. Webvision: The Organization of the Retina and Visual System; 2020.
Kamao H, Mandai M, Ohashi W, Hirami Y, Kurimoto Y, Kiryu J, et al. Evaluation of the surgical device and procedure for extracellular matrix–scaffold–supported human iPSC–derived retinal pigment epithelium cell sheet transplantation. Invest Ophthalmol Vis Sci. 2017;58:211–20.
pubmed: 28114582 doi: 10.1167/iovs.16-19778
Liu Z, Yu N, Holz FG, Yang F, Stanzel BV. Enhancement of retinal pigment epithelial culture characteristics and subretinal space tolerance of scaffolds with 200 nm fiber topography. Biomaterials. 2014;35:2837–50.
pubmed: 24439407 doi: 10.1016/j.biomaterials.2013.12.069
Liu H, Wu F, Chen R, Chen Y, Yao K, Liu Z, et al. Electrohydrodynamic jet-printed ultrathin polycaprolactone scaffolds mimicking Bruch’s membrane for retinal pigment epithelial tissue engineering. Int J Bioprint. 2022;8:550.
pubmed: 36105130 pmcid: 9468949 doi: 10.18063/ijb.v8i3.550
Lu B, Zhu D, Hinton D, Humayun MS, Tai Y-C. Mesh-supported submicron parylene-C membranes for culturing retinal pigment epithelial cells. Biomed Microdevices. 2012;14:659–67.
pubmed: 22391881 doi: 10.1007/s10544-012-9645-8
Monville C, Bertin S, Devisme C, Brazhnikova E, Jaillard C, Walter H, et al. Phase I/II open-label study of implantation into one eye of hESC-derived RPE in patients with retinitis pigmentosa due to monogenic mutation: first safety results. Invest Ophthalmol Vis Sci. 2023;64:3829–3829.
Ben M’, Habeler W, Plancheron A, Jarraya M, Regent F, Terray A, et al. Human ESC–derived retinal epithelial cell sheets potentiate rescue of photoreceptor cell loss in rats with retinal degeneration. Sci Transl Med. 2017;9:eaai7471.
doi: 10.1126/scitranslmed.aai7471
Caporossi T, Tartaro R, Giansanti F, Rizzo S. The amniotic membrane for retinal pathologies. Insights on the surgical techniques. Graefe’s Archive Clin Experimental Ophthalmol. 2020;258:1347–9.
doi: 10.1007/s00417-020-04665-0
Gu J, Wang Y, Cui Z, Li H, Li S, Yang X, et al. The construction of retinal pigment epithelium sheets with enhanced characteristics and cilium assembly using iPS conditioned medium and small incision lenticule extraction derived lenticules. Acta Biomater. 2019;92:115–31.
pubmed: 31075513 doi: 10.1016/j.actbio.2019.05.017
Galloway CA, Dalvi S, Shadforth AMA, Suzuki S, Wilson M, Kuai D, et al. Characterization of human iPSC-RPE on a prosthetic Bruch’s membrane manufactured from silk fibroin. Invest Ophthalmol Vis Sci. 2018;59:2792–800.
pubmed: 30025113 pmcid: 5989661 doi: 10.1167/iovs.17-23157
Liu H, Vijayavenkataraman S, Wang D, Jing L, Sun J, He K. Influence of electrohydrodynamic jetting parameters on the morphology of PCL scaffolds. Int J Bioprint. 2017;3:009.
pubmed: 33094184 pmcid: 7575636 doi: 10.18063/IJB.2017.01.009
Griffin DR, Archang MM, Kuan C-H, Weaver WM, Weinstein JS, Feng AC, et al. Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat Mater. 2021;20:560–9.
pubmed: 33168979 doi: 10.1038/s41563-020-00844-w
Won J-E, Lee YS, Park J-H, Lee J-H, Shin YS, Kim C-H, et al. Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing. Biomaterials. 2020;227:119548.
pubmed: 31670033 doi: 10.1016/j.biomaterials.2019.119548
Song MJ, Quinn R, Nguyen E, Hampton C, Sharma R, Park TS, et al. Bioprinted 3D outer retina barrier uncovers RPE-dependent choroidal phenotype in advanced macular degeneration. Nat Methods. 2023;20:149–61.
pubmed: 36550275 doi: 10.1038/s41592-022-01701-1
Chuang J-Z, Yang N, Nakajima N, Otsu W, Fu C, Yang HH, et al. Retinal pigment epithelium-specific CLIC4 mutant is a mouse model of dry age-related macular degeneration. Nat Commun. 2022;13:374.
pubmed: 35042858 pmcid: 8766482 doi: 10.1038/s41467-021-27935-9
Manian KV, Galloway CA, Dalvi S, Emanuel AA, Mereness JA, Black W, et al. 3D iPSC modeling of the retinal pigment epithelium-choriocapillaris complex identifies factors involved in the pathology of macular degeneration. Cell Stem Cell. 2021;28:846–e8628.
pubmed: 33784497 pmcid: 8520418 doi: 10.1016/j.stem.2021.02.006
Chung M, Lee S, Lee BJ, Son K, Jeon NL, Kim JH. Wet-AMD on a Chip: Modeling Outer Blood-Retinal Barrier In Vitro. Adv Healthc Mater. 2018;7:1700028.
doi: 10.1002/adhm.201700028
Lee I-K, Ludwig AL, Phillips MJ, Lee J, Xie R, Sajdak BS, et al. Ultrathin micromolded 3D scaffolds for high-density photoreceptor layer reconstruction. Sci Adv. 2021;7:eabf0344.
pubmed: 33883135 pmcid: 8059936 doi: 10.1126/sciadv.abf0344
Jung YH, Phillips MJ, Lee J, Xie R, Ludwig AL, Chen G, et al. 3D microstructured scaffolds to support photoreceptor polarization and maturation. Adv Mater. 2018;30:e1803550.
pubmed: 30109736 doi: 10.1002/adma.201803550
Snodderly DM, Sandstrom MM, Leung IY-F, Zucker CL, Neuringer M. Retinal pigment epithelial cell distribution in central retina of rhesus monkeys. Invest Ophthalmol Vis Sci. 2002;43:2815–8.
pubmed: 12202496
Akhtar T, Xie H, Khan MI, Zhao H, Bao J, Zhang M, et al. Accelerated photoreceptor differentiation of hiPSC-derived retinal organoids by contact co-culture with retinal pigment epithelium. Stem Cell Res. 2019;39:101491.
pubmed: 31326746 doi: 10.1016/j.scr.2019.101491
Singh D, Chen X, Xia T, Ghiassi-Nejad M, Tainsh L, Adelman RA, et al. Partially differentiated neuroretinal cells promote maturation of the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2020;61:9–9.
pubmed: 33151282 pmcid: 7671856 doi: 10.1167/iovs.61.13.9
Achberger K, Probst C, Haderspeck J, Bolz S, Rogal J, Chuchuy J et al. Merging organoid and organ-on-a-chip technology to generate complex multi-layer tissue models in a human retina-on-a-chip platform. Elife. 2019;8.
Liu Z, Liow SS, Lai SL, Alli-Shaik A, Holder GE, Parikh BH, et al. Retinal-detachment repair and vitreous-like-body reformation via a thermogelling polymer endotamponade. Nat Biomed Eng. 2019;3:598–610.
pubmed: 30962587 doi: 10.1038/s41551-019-0382-7
Zhang K, Liu Z, Lin Q, Boo YJ, Ow V, Zhao X, et al. Injectable PTHF-based thermogelling polyurethane implants for long-term intraocular application. Biomater Res. 2022;26:70.
pubmed: 36461130 pmcid: 9716749 doi: 10.1186/s40824-022-00316-z
Parikh BH, Liu Z, Blakeley P, Lin Q, Singh M, Ong JY, et al. A bio-functional polymer that prevents retinal scarring through modulation of NRF2 signalling pathway. Nat Commun. 2022;13:2796.
pubmed: 35589753 pmcid: 9119969 doi: 10.1038/s41467-022-30474-6
Campochiaro PA, Avery R, Brown DM, Heier JS, Ho AC, Huddleston SM, et al. Gene therapy for neovascular age-related macular degeneration by subretinal delivery of RGX-314: a phase 1/2a dose-escalation study. Lancet. 2024;403:1563–73.
pubmed: 38554726 doi: 10.1016/S0140-6736(24)00310-6
Zhao X, Seah I, Xue K, Wong W, Tan QSW, Ma X, et al. Antiangiogenic nanomicelles for the topical delivery of aflibercept to treat retinal neovascular disease. Adv Mater. 2022;34:e2108360.
pubmed: 34726299 doi: 10.1002/adma.202108360
Xue K, Zhao X, Zhang Z, Qiu B, Tan QSW, Ong KH, et al. Sustained delivery of anti-VEGFs from thermogel depots inhibits angiogenesis without the need for multiple injections. Biomater Sci. 2019;7:4603–14.
pubmed: 31436780 doi: 10.1039/C9BM01049A
Kharbikar BN, Mohindra P, Desai TA. Biomaterials to enhance stem cell transplantation. Cell Stem Cell. 2022;29:692–721.

Auteurs

Hang Liu (H)

Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

Suber S Huang (SS)

Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Retina Center of Ohio, Cleveland, OH, USA.
Bascom Palmer Eye Institute, University of Miami, Coral Gables, FL, USA.

Gopal Lingam (G)

Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
Department of Ophthalmology, National University Hospital, Singapore, Singapore.
Singapore Eye Research Institute, Singapore, Singapore.

Dan Kai (D)

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.

Xinyi Su (X)

Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. xysu@imcb.a-star.edu.sg.
Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. xysu@imcb.a-star.edu.sg.
Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. xysu@imcb.a-star.edu.sg.
Department of Ophthalmology, National University Hospital, Singapore, Singapore. xysu@imcb.a-star.edu.sg.
Singapore Eye Research Institute, Singapore, Singapore. xysu@imcb.a-star.edu.sg.

Zengping Liu (Z)

Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. zengpingliu@nus.edu.sg.
Centre for Innovation and Prevision Eye Health, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. zengpingliu@nus.edu.sg.
Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. zengpingliu@nus.edu.sg.
Singapore Eye Research Institute, Singapore, Singapore. zengpingliu@nus.edu.sg.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH