Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study.
Alzheimer’s disease
Alzheimer’s pathology
Enlarged perivascular spaces
Longitudinal analysis
Multicentre study
Virchow–Robin spaces
Journal
Alzheimer's research & therapy
ISSN: 1758-9193
Titre abrégé: Alzheimers Res Ther
Pays: England
ID NLM: 101511643
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
20
06
2024
accepted:
15
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD. We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; mean PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρ Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies. German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .
Sections du résumé
BACKGROUND
BACKGROUND
Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD.
METHODS
METHODS
We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; mean
RESULTS
RESULTS
PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρ
CONCLUSION
CONCLUSIONS
Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies.
TRIAL REGISTRATION
BACKGROUND
German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .
Identifiants
pubmed: 39482759
doi: 10.1186/s13195-024-01603-8
pii: 10.1186/s13195-024-01603-8
doi:
Types de publication
Journal Article
Multicenter Study
Observational Study
Langues
eng
Sous-ensembles de citation
IM
Pagination
242Informations de copyright
© 2024. The Author(s).
Références
Troili F, Cipollini V, Moci M, Morena E, Palotai M, Rinaldi V, et al. Perivascular unit: this must be the place. The anatomical crossroad between the immune, vascular and nervous system. Front Neuroanat. 2020;14. Available from: https://www.frontiersin.org/article/10.3389/fnana.2020.00017/full .
Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020;16(3):137–53. https://doi.org/10.1038/s41582-020-0312-z .
doi: 10.1038/s41582-020-0312-z
pubmed: 32094487
Del Brutto OH, Mera RM, Costa AF, Rumbea DA, Recalde BY, Del Brutto VJ. Patterns of progression of cerebral small vessel disease markers in older adults of Amerindian ancestry: a population-based, longitudinal prospective cohort study. Aging Clin Exp Res. 2022;34(11):2751–9. https://doi.org/10.1007/s40520-022-02223-8 .
doi: 10.1007/s40520-022-02223-8
pubmed: 35999426
pmcid: 9398047
Francis F, Ballerini L, Wardlaw JM. Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: a systematic review and meta-analysis. Int J Stroke. 2019;14(4):359–71 Available from: http://journals.sagepub.com/doi/https://doi.org/10.1177/1747493019830321 .
pubmed: 30762496
doi: 10.1177/1747493019830321
Li Y, Kalpouzos G, Laukka EJ, Dekhtyar S, Bäckman L, Fratiglioni L, et al. Progression of neuroimaging markers of cerebral small vessel disease in older adults: A 6-year follow-up study. Neurobiol Aging. 2022;112:204–11 Available from: https://doi.org/10.1016/j.neurobiolaging.2022.01.006 .
pubmed: 35231847
doi: 10.1016/j.neurobiolaging.2022.01.006
Vikner T, Karalija N, Eklund A, Malm J, Lundquist A, Gallewicz N, et al. 5-year associations among cerebral arterial pulsatility, perivascular space dilation, and white matter lesions. Ann Neurol. 2022;92(5):871–81 Available from: https://onlinelibrary.wiley.com/10.1002/ana.26475 .
pubmed: 36054261
pmcid: 9804392
doi: 10.1002/ana.26475
Kim HG, Shin N-Y, Nam Y, Yun E, Yoon U, Lee HS, et al. MRI-visible dilated perivascular space in the brain by age: the human connectome project. Radiology. 2023;306(3):1–9 Available from: https://pubs.rsna.org/10.1148/radiol.213254 .
doi: 10.1148/radiol.213254
Lynch KM, Sepehrband F, Toga AW, Choupan J. Brain perivascular space imaging across the human lifespan. Neuroimage. 2023;271:120009. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1053811923001556
pubmed: 36907282
doi: 10.1016/j.neuroimage.2023.120009
Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9(1):4878. https://doi.org/10.1038/s41467-018-07318-3 .
doi: 10.1038/s41467-018-07318-3
pubmed: 30451853
pmcid: 6242982
Ungvari Z, Toth P, Tarantini S, Prodan CI, Sorond F, Merkely B, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021;17(10):639–54. https://doi.org/10.1038/s41581-021-00430-6 .
doi: 10.1038/s41581-021-00430-6
pubmed: 34127835
pmcid: 8202227
Spence JD. Blood pressure gradients in the brain: Their importance to understanding pathogenesis of cerebral small vessel disease. Brain Sci. 2019;9(2):1–8.
doi: 10.3390/brainsci9020021
Okar SV, Hu F, Shinohara RT, Beck ES, Reich DS, Ineichen BV. The etiology and evolution of magnetic resonance imaging-visible perivascular spaces: Systematic review and meta-analysis. Front Neurosci. 2023;17(March):1–13 Available from: https://www.frontiersin.org/articles/10.3389/fnins.2023.1038011/full .
Aribisala BS, Wiseman S, Morris Z, Valdés-Hernández MC, Royle NA, Maniega SM, et al. Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities. Stroke. 2014;45(2):605–7 Available from: https://www.ahajournals.org/doi/10.1161/STROKEAHA.113.004059 .
pubmed: 24399375
pmcid: 3906539
doi: 10.1161/STROKEAHA.113.004059
Satizabal CL, Zhu Y-C, Dufouil C, Tzourio C. Inflammatory proteins and the severity of dilated virchow-robin spaces in the elderly. J Alzheimer’s Dis. 2012;33(2):323–8 Available from: https://www.medra.org/servlet/aliasResolver?alias=iospressanddoi=https://doi.org/10.3233/JAD-2012-120874 .
doi: 10.3233/JAD-2012-120874
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):1–12.
doi: 10.1126/scitranslmed.3003748
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–24. https://doi.org/10.1016/S1474-4422(18)30318-1 .
doi: 10.1016/S1474-4422(18)30318-1
pubmed: 30353860
pmcid: 6261373
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain - Implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70.
pubmed: 26195256
pmcid: 4694579
doi: 10.1038/nrneurol.2015.119
Braun M, Iliff JJ. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases. In: International Review of Neurobiology . 1st ed. Elsevier Inc.; 2020. p. 413–36. https://doi.org/10.1016/bs.irn.2020.02.006
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat Rev Neurol. 2020;16(1):30–42. https://doi.org/10.1038/s41582-019-0281-2 .
doi: 10.1038/s41582-019-0281-2
pubmed: 31827267
Vilor-Tejedor N, Ciampa I, Operto G, Falcón C, Suárez-Calvet M, Crous-Bou M, et al. Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum. Alzheimers Res Ther. 2021;13(1):135 Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00878-5 .
pubmed: 34353353
pmcid: 8340485
doi: 10.1186/s13195-021-00878-5
Wang ML, Yu MM, Wei XE, Li WB, Li YH. Association of enlarged perivascular spaces with Aβ and tau deposition in cognitively normal older population. Neurobiol Aging. 2021;100:32–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458020304255 .
pubmed: 33477009
doi: 10.1016/j.neurobiolaging.2020.12.014
Charidimou A, Boulouis G, Pasi M, Auriel E, van Etten ES, Haley K, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017;88(12):1157–64 Available from: https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000003746 .
pubmed: 28228568
pmcid: 5373782
doi: 10.1212/WNL.0000000000003746
Perosa V, Oltmer J, Munting LP, Freeze WM, Auger CA, Scherlek AA, et al. Perivascular space dilation is associated with vascular amyloid-β accumulation in the overlying cortex. Acta Neuropathol. 2022;143(3):331–48. https://doi.org/10.1007/s00401-021-02393-1 .
doi: 10.1007/s00401-021-02393-1
pubmed: 34928427
Van Veluw SJ, Biessels GJ, Bouvy WH, Spliet WGM, Zwanenburg JJM, Luijten PR, et al. Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces. J Cereb Blood Flow Metab. 2016;36(3):576–80.
pubmed: 26661250
doi: 10.1177/0271678X15620434
Sepehrband F, Barisano G, Sheikh-Bahaei N, Choupan J, Cabeen RP, Lynch KM, et al. Volumetric distribution of perivascular space in relation to mild cognitive impairment. Neurobiol Aging. 2021;99:28–43.
pubmed: 33422892
doi: 10.1016/j.neurobiolaging.2020.12.010
Banerjee G, Kim HJ, Fox Z, Jäger HR, Wilson D, Charidimou A, et al. MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017;140(4):1107–16 Available from: https://academic.oup.com/brain/article/140/4/1107/3003279 .
pubmed: 28335021
doi: 10.1093/brain/awx003
Ramirez J, Berezuk C, McNeely AA, Scott CJM, Gao F, Black SE. Visible virchow-robin spaces on magnetic resonance imaging of alzheimer’s disease patients and normal elderly from the sunnybrook dementia study. J Alzheimer’s Dis. 2014;43(2):415–24 Available from: https://www.medra.org/servlet/aliasResolver?alias=iospressanddoi=10.3233/JAD-132528 .
doi: 10.3233/JAD-132528
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–62. https://doi.org/10.1016/j.jalz.2018.02.018 .
doi: 10.1016/j.jalz.2018.02.018
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci. 2018;21(10):1318–31. https://doi.org/10.1038/s41593-018-0234-x .
doi: 10.1038/s41593-018-0234-x
pubmed: 30250261
pmcid: 6198802
Gertje EC, van Westen D, Panizo C, Mattsson-Carlgren N, Hansson O. Association of enlarged perivascular spaces and measures of small vessel and Alzheimer disease. Neurol. 2021;96:193–202.
Jeong SH, Cha J, Park M, Jung JH, Ye BS, Sohn YH, et al. Association of Enlarged Perivascular Spaces With Amyloid Burden and Cognitive Decline in Alzheimer Disease Continuum. Neurology. 2022;99(16):E1791–802.
pubmed: 35985826
doi: 10.1212/WNL.0000000000200989
Smith EE, Biessels GJ, De Guio F, de Leeuw FE, Duchesne S, Düring M, et al. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer’s Dementia: Diagn Assess Dis Monit. 2019;11:191–204 Elsevier Inc.
Luo X, Jiaerken Y, Yu X, Huang P, Qiu T, Jia Y, et al. Associations between APOE genotype and cerebral small-vessel disease: A longitudinal study. Oncotarget. 2017;8(27):44477–89.
pubmed: 28574812
pmcid: 5546495
doi: 10.18632/oncotarget.17724
Barnes A, Ballerini L, Valdés Hernández M del C, Chappell FM, Muñoz Maniega S, Meijboom R, et al. Topological relationships between perivascular spaces and progression of white matter hyperintensities: A pilot study in a sample of the Lothian Birth Cohort 1936. Front Neurol. 2022;13. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2022.889884/full .
Benjamin P, Trippier S, Lawrence AJ, Lambert C, Zeestraten E, Williams OA, et al. Lacunar infarcts, but not perivascular spaces, are predictors of cognitive decline in cerebral small-vessel disease. Stroke. 2018;49(3):586–93.
pubmed: 29438074
pmcid: 5832012
doi: 10.1161/STROKEAHA.117.017526
Jessen F, Spottke A, Boecker H, Brosseron F, Buerger K, Catak C, et al. Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer’s disease (DELCODE). Alzheimer’s Res Ther. 2018;10(1):1–10.
Bernal J, Schreiber S, Menze I, Ostendorf A, Pfister M, Geisendörfer J, et al. Arterial hypertension and β-amyloid accumulation have spatially overlapping effects on posterior white matter hyperintensity volume: a cross-sectional study. Alzheimers Res Ther. 2023;15(1):97 Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-023-01243-4 .
pubmed: 37226207
pmcid: 10207740
doi: 10.1186/s13195-023-01243-4
Jessen F, Wolfsgruber S, Kleineindam L, Spottke A, Altenstein S, Bartels C, et al. Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers. Alzheimer’s Dement. 2023;19(2):487–97 Available from: https://onlinelibrary.wiley.com/doi/10.1002/alz.12674 .
doi: 10.1002/alz.12674
Puonti O, Iglesias JE, Van Leemput K. Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling. Neuroimage. 2016;143:235–49. https://doi.org/10.1016/j.neuroimage.2016.09.011 .
doi: 10.1016/j.neuroimage.2016.09.011
pubmed: 27612647
Dubost F, Yilmaz P, Adams H, Bortsova G, Ikram MA, Niessen W, et al. Enlarged perivascular spaces in brain MRI: Automated quantification in four regions. Neuroimage. 2018;2019(185):534–44. https://doi.org/10.1016/j.neuroimage.2018.10.026 .
doi: 10.1016/j.neuroimage.2018.10.026
Huang P, Zhu Z, Zhang R, Wu X, Jiaerken Y, Wang S, et al. Factors associated with the dilation of perivascular space in healthy elderly subjects. Front Aging Neurosci. 2021;13(March):1–9 Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2021.624732/full .
Zeng Q, Li K, Luo X, Wang S, Xu X, Jiaerken Y, et al. The association of enlarged perivascular space with microglia-related inflammation and Alzheimer’s pathology in cognitively normal elderly. Neurobiol Dis. 2022;170(May):105755 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996122001474 .
pubmed: 35577066
doi: 10.1016/j.nbd.2022.105755
Valdés Hernández MDC, Ballerini L, Glatz, A, Aribisala BS, Bastin ME, Dickie DA, Duarte Coello R, Munoz Maniega S, Wardlaw JM. Step-by-step pipeline for segmenting enlarged perivascular spaces from 3D T2-weighted MRI, 2018-2023 [software]. University of Edinburgh. College of Medicine and Veterinary Medicine. Centre for Clinical Brain Scie. 2023. https://doi.org/10.7488/ds/7486 .
Valdés Hernández M del C, Duarte Coello R, Xu W, Bernal J, Cheng Y, Ballerini L, et al. Influence of threshold selection and image sequence in in-vivo segmentation of enlarged perivascular spaces. J Neurosci Methods. 2024;403(December 2023):110037. Available from: https://linkinghub.elsevier.com/retrieve/pii/S016502702300256X
Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis. 2015;39(3–4):224–31.
pubmed: 25823458
pmcid: 4386144
doi: 10.1159/000375153
Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw F-E, et al. Neuroimaging standards for research into small vessel disease—advances since 2013. Lancet Neurol. 2023;22(7):602–18 Available from: https://linkinghub.elsevier.com/retrieve/pii/S147444222300131X .
pubmed: 37236211
doi: 10.1016/S1474-4422(23)00131-X
Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. In: Lecture Notes in Computer Science. 1998. p. 130–7. Available from: http://link.springer.com/10.1007/BFb0056195 .
Ballerini L, Lovreglio R, Valdés Hernández MDC, Ramirez J, MacIntosh BJ, Black SE, et al. Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering. Sci Rep. 2018;8(1):1–11.
doi: 10.1038/s41598-018-19781-5
Bernal J, Valdés-Hernández MDC, Escudero J, Duarte R, Ballerini L, Bastin ME, et al. Assessment of perivascular space filtering methods using a three dimensional computational model. Magn Reson Imaging [Internet]. 2022;93(April):33–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0730725X22001345 .
Valdés Hernández M, Piper RJ, Wang X, Deary IJ, Wardlaw JM. Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: a systematic review. J Magn Reson Imaging. 2013;38(4):774–85 Available from: https://onlinelibrary.wiley.com/doi/10.1002/jmri.24047 .
doi: 10.1002/jmri.24047
Singer JD, Willett JB. A Framework for Investigating Change over Time. In: Applied Longitudinal Data Analysis. Oxford University PressNew York; 2003. p. 3–15. Available from: https://academic.oup.com/book/41753/chapter/354169957 .
Curran PJ, Obeidat K, Losardo D. Twelve frequently asked questions about growth curve modeling. J Cogn Dev. 2010;11(2):121–36. https://doi.org/10.1080/15248371003699969 .
doi: 10.1080/15248371003699969
pubmed: 21743795
pmcid: 3131138
Ghisletta P, Renaud O, Jacot N, Courvoisier D. Linear mixed-effects and latent curve models for longitudinal life course analyses. In: A life course perspective on health trajectories and transitions. 2015. p. 155–78. Available from: http://link.springer.com/10.1007/978-3-319-20484-0_8 .
Guillaume B, Hua X, Thompson PM, Waldorp L, Nichols TE. Fast and accurate modelling of longitudinal and repeated measures neuroimaging data. Neuroimage. 2014;94:287–302. https://doi.org/10.1016/j.neuroimage.2014.03.029 .
doi: 10.1016/j.neuroimage.2014.03.029
pubmed: 24650594
Van der Meer T, Te Grotenhuis M, Pelzer B. Influential cases in multilevel modeling: a methodological comment. Am Sociol Rev. 2010;75(1):173–8 Available from: http://journals.sagepub.com/10.1177/0003122409359166 .
doi: 10.1177/0003122409359166
R Core Team. R: A language and environment for statistical computing. 2020.
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.
pubmed: 16545965
doi: 10.1016/j.neuroimage.2006.01.015
Brudfors M, Balbastre Y, Flandin G, Nachev P, Ashburner J. Flexible Bayesian modelling for nonlinear image registration. 2020. Available from: http://arxiv.org/abs/2006.02338 .
Brudfors M, Balbastre Y, Ashburner J. Groupwise Multimodal Image Registration Using Joint Total Variation. Commun Comput Inf Sci. 2020;1248CCIS:184–94.
Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage. 2011;55(3):954–67. https://doi.org/10.1016/j.neuroimage.2010.12.049 .
doi: 10.1016/j.neuroimage.2010.12.049
pubmed: 21216294
Markov NT, Lindbergh CA, Staffaroni AM, Perez K, Stevens M, Nguyen K, et al. Age-related brain atrophy is not a homogenous process: different functional brain networks associate differentially with aging and blood factors. Proc Natl Acad Sci U S A. 2022;119(49):e2207181119.
pubmed: 36459652
pmcid: 9894212
doi: 10.1073/pnas.2207181119
Evans TE, Knol MJ, Schwingenschuh P, Wittfeld K, Hilal S, Ikram MA, et al. Determinants of perivascular spaces in the general population. Neurology. 2023;100(2):e107-22 Available from: https://journals.lww.com/10.1212/WNL.0000000000201349 .
pubmed: 36253103
pmcid: 9841448
doi: 10.1212/WNL.0000000000201349
Martinez-Ramirez S, Pontes-Neto OM, Dumas AP, Auriel E, Halpin A, Quimby M, et al. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology. 2013;80(17):1551–6 Available from: https://www.neurology.org/lookup/doi/10.1212/WNL.0b013e31828f1876 .
pubmed: 23553482
pmcid: 3662325
doi: 10.1212/WNL.0b013e31828f1876
Kern KC, Nasrallah IM, Bryan RN, Reboussin DM, Wright CB. Intensive systolic blood pressure treatment remodels brain perivascular spaces: a secondary analysis of the Systolic Pressure Intervention Trial (SPRINT). NeuroImage Clin. 2023;40:103513. https://doi.org/10.1016/j.nicl.2023.103513 .
doi: 10.1016/j.nicl.2023.103513
pubmed: 37774646
pmcid: 10540038
Loos CMJ, Klarenbeek P, van Oostenbrugge RJ, Staals J. Association between perivascular spaces and progression of white matter hyperintensities in lacunar stroke patients. Hendrikse J, editor. PLoS One. 2015;10(9):e0137323. https://doi.org/10.1371/journal.pone.0137323 .
doi: 10.1371/journal.pone.0137323
pubmed: 26352265
pmcid: 4564273
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–96. https://doi.org/10.1016/S1474-4422(19)30079-1 .
doi: 10.1016/S1474-4422(19)30079-1
pubmed: 31097385
Potter GM, Doubal FN, Jackson CA, Chappell FM, Sudlow CL, Dennis MS, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke. 2015;10(3):376–81 Available from: http://journals.sagepub.com/doi/10.1111/ijs.12054 .
pubmed: 23692610
doi: 10.1111/ijs.12054
Zhang X, Ding L, Yang L, Qin W, Yuan J, Li S, et al. Brain atrophy correlates with severe enlarged perivascular spaces in basal ganglia among lacunar stroke patients. PLoS ONE. 2016;11(2):1–9.
doi: 10.1371/journal.pone.0149593
Reddy OC, van der Werf YD. The sleeping brain: Harnessing the power of the glymphatic system through lifestyle choices. Brain Sci. 2020;10(11):1–16.
doi: 10.3390/brainsci10110868
Duperron MG, Knol MJ, Le Grand Q, Evans TE, Mishra A, Tsuchida A, et al. Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease. Nat Med. 2023;29(4):950–62 https://www.nature.com/articles/s41591-023-02268-w .
pubmed: 37069360
pmcid: 10115645
doi: 10.1038/s41591-023-02268-w
Ineichen BV, Okar SV, Proulx ST, Engelhardt B, Lassmann H, Reich DS. Perivascular spaces and their role in neuroinflammation. Neuron. 2022;110(21):3566–81. https://doi.org/10.1016/j.neuron.2022.10.024 .
doi: 10.1016/j.neuron.2022.10.024
pubmed: 36327898
pmcid: 9905791
Mogensen FLH, Delle C, Nedergaard M. The glymphatic system (En)during inflammation. Int J Mol Sci. 2021;22(14):1–20.
doi: 10.3390/ijms22147491
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72. https://doi.org/10.1038/s41582-020-00435-y .
doi: 10.1038/s41582-020-00435-y
pubmed: 33318676
Low A, Mak E, Malpetti M, Passamonti L, Nicastro N, Stefaniak JD, et al. In vivo neuroinflammation and cerebral small vessel disease in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2021;92(1):45–52 Available from: https://jnnp.bmj.com/lookup/10.1136/jnnp-2020-323894 .
doi: 10.1136/jnnp-2020-323894
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50. https://doi.org/10.1038/nrneurol.2017.188 .
doi: 10.1038/nrneurol.2017.188
pubmed: 29377008
pmcid: 5829048
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1474442215700165 .
pubmed: 25792098
pmcid: 5909703
doi: 10.1016/S1474-4422(15)70016-5
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv. 2018;4:575–90. https://doi.org/10.1016/j.trci.2018.06.014 .
doi: 10.1016/j.trci.2018.06.014
Boespflug EL, Schwartz DL, Lahna D, Pollock J, Iliff JJ, Kaye JA, et al. MR imaging-based multimodal autoidentification of perivascular spaces (mMAPS): Automated morphologic segmentation of enlarged perivascular spaces at clinical field strength. Radiology. 2018;286(2):632–42.
pubmed: 28853674
doi: 10.1148/radiol.2017170205
Hilal S, Tan CS, Adams HHH, Habes M, Mok V, Venketasubramanian N, et al. Enlarged perivascular spaces and cognition. Neurology. 2018;91(9):e832–42.
pubmed: 30068634
pmcid: 6133622
doi: 10.1212/WNL.0000000000006079
Wuerfel J, Haertle M, Waiczies H, Tysiak E, Bechmann I, Wernecke KD, et al. Perivascular spaces- -MRI marker of inflammatory activity in the brain? Brain. 2008;131(9):2332–40 Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awn171 .
pubmed: 18676439
doi: 10.1093/brain/awn171