Perivascular space enlargement accelerates in ageing and Alzheimer's disease pathology: evidence from a three-year longitudinal multicentre study.


Journal

Alzheimer's research & therapy
ISSN: 1758-9193
Titre abrégé: Alzheimers Res Ther
Pays: England
ID NLM: 101511643

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 20 06 2024
accepted: 15 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD. We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; mean PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρ Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies. German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .

Sections du résumé

BACKGROUND BACKGROUND
Perivascular space (PVS) enlargement in ageing and Alzheimer's disease (AD) and the drivers of such a structural change in humans require longitudinal investigation. Elucidating the effects of demographic factors, hypertension, cerebrovascular dysfunction, and AD pathology on PVS dynamics could inform the role of PVS in brain health function as well as the complex pathophysiology of AD.
METHODS METHODS
We studied PVS in centrum semiovale (CSO) and basal ganglia (BG) computationally over three to four annual visits in 503 participants (255 females; mean
RESULTS RESULTS
PVS volumes increased significantly over follow-ups (CSO: B = 0.03 [0.02, 0.05], p < 0.001; BG: B = 0.05 [0.03, 0.07], p < 0.001). PVS enlargement rates varied substantially across subjects and depended on the participant's age, white matter hyperintensities volumes, and amyloid and tau status. PVS volumes were higher across elderly participants, regardless of region of interest (CSO: B = 0.12 [0.02, 0.21], p = 0.017; BG: B = 0.19 [0.09, 0.28], p < 0.001). Faster BG-PVS enlargement related to lower baseline white matter hyperintensities volumes (ρ
CONCLUSION CONCLUSIONS
Our longitudinal evidence supports the relevance of PVS enlargement in presumably healthy ageing as well as in AD pathology. We further discuss the region-specific involvement of white matter hyperintensities and neurotoxic waste accumulation in PVS enlargement and the possibility of additional factors contributing to PVS progression. A comprehensive understanding of PVS dynamics could facilitate the understanding of pathological cascades and might inform targeted treatment strategies.
TRIAL REGISTRATION BACKGROUND
German Clinical Trials Register DRKS00007966. Registered 04.05.2015 - retrospectively registered, https://drks.de/search/en/trial/DRKS00007966 .

Identifiants

pubmed: 39482759
doi: 10.1186/s13195-024-01603-8
pii: 10.1186/s13195-024-01603-8
doi:

Types de publication

Journal Article Multicenter Study Observational Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

242

Informations de copyright

© 2024. The Author(s).

Références

Troili F, Cipollini V, Moci M, Morena E, Palotai M, Rinaldi V, et al. Perivascular unit: this must be the place. The anatomical crossroad between the immune, vascular and nervous system. Front Neuroanat. 2020;14. Available from: https://www.frontiersin.org/article/10.3389/fnana.2020.00017/full .
Wardlaw JM, Benveniste H, Nedergaard M, Zlokovic BV, Mestre H, Lee H, et al. Perivascular spaces in the brain: anatomy, physiology and pathology. Nat Rev Neurol. 2020;16(3):137–53. https://doi.org/10.1038/s41582-020-0312-z .
doi: 10.1038/s41582-020-0312-z pubmed: 32094487
Del Brutto OH, Mera RM, Costa AF, Rumbea DA, Recalde BY, Del Brutto VJ. Patterns of progression of cerebral small vessel disease markers in older adults of Amerindian ancestry: a population-based, longitudinal prospective cohort study. Aging Clin Exp Res. 2022;34(11):2751–9. https://doi.org/10.1007/s40520-022-02223-8 .
doi: 10.1007/s40520-022-02223-8 pubmed: 35999426 pmcid: 9398047
Francis F, Ballerini L, Wardlaw JM. Perivascular spaces and their associations with risk factors, clinical disorders and neuroimaging features: a systematic review and meta-analysis. Int J Stroke. 2019;14(4):359–71 Available from: http://journals.sagepub.com/doi/https://doi.org/10.1177/1747493019830321 .
pubmed: 30762496 doi: 10.1177/1747493019830321
Li Y, Kalpouzos G, Laukka EJ, Dekhtyar S, Bäckman L, Fratiglioni L, et al. Progression of neuroimaging markers of cerebral small vessel disease in older adults: A 6-year follow-up study. Neurobiol Aging. 2022;112:204–11 Available from: https://doi.org/10.1016/j.neurobiolaging.2022.01.006 .
pubmed: 35231847 doi: 10.1016/j.neurobiolaging.2022.01.006
Vikner T, Karalija N, Eklund A, Malm J, Lundquist A, Gallewicz N, et al. 5-year associations among cerebral arterial pulsatility, perivascular space dilation, and white matter lesions. Ann Neurol. 2022;92(5):871–81 Available from: https://onlinelibrary.wiley.com/10.1002/ana.26475 .
pubmed: 36054261 pmcid: 9804392 doi: 10.1002/ana.26475
Kim HG, Shin N-Y, Nam Y, Yun E, Yoon U, Lee HS, et al. MRI-visible dilated perivascular space in the brain by age: the human connectome project. Radiology. 2023;306(3):1–9 Available from: https://pubs.rsna.org/10.1148/radiol.213254 .
doi: 10.1148/radiol.213254
Lynch KM, Sepehrband F, Toga AW, Choupan J. Brain perivascular space imaging across the human lifespan. Neuroimage. 2023;271:120009. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1053811923001556
pubmed: 36907282 doi: 10.1016/j.neuroimage.2023.120009
Mestre H, Tithof J, Du T, Song W, Peng W, Sweeney AM, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018;9(1):4878. https://doi.org/10.1038/s41467-018-07318-3 .
doi: 10.1038/s41467-018-07318-3 pubmed: 30451853 pmcid: 6242982
Ungvari Z, Toth P, Tarantini S, Prodan CI, Sorond F, Merkely B, et al. Hypertension-induced cognitive impairment: from pathophysiology to public health. Nat Rev Nephrol. 2021;17(10):639–54. https://doi.org/10.1038/s41581-021-00430-6 .
doi: 10.1038/s41581-021-00430-6 pubmed: 34127835 pmcid: 8202227
Spence JD. Blood pressure gradients in the brain: Their importance to understanding pathogenesis of cerebral small vessel disease. Brain Sci. 2019;9(2):1–8.
doi: 10.3390/brainsci9020021
Okar SV, Hu F, Shinohara RT, Beck ES, Reich DS, Ineichen BV. The etiology and evolution of magnetic resonance imaging-visible perivascular spaces: Systematic review and meta-analysis. Front Neurosci. 2023;17(March):1–13 Available from: https://www.frontiersin.org/articles/10.3389/fnins.2023.1038011/full .
Aribisala BS, Wiseman S, Morris Z, Valdés-Hernández MC, Royle NA, Maniega SM, et al. Circulating inflammatory markers are associated with magnetic resonance imaging-visible perivascular spaces but not directly with white matter hyperintensities. Stroke. 2014;45(2):605–7 Available from: https://www.ahajournals.org/doi/10.1161/STROKEAHA.113.004059 .
pubmed: 24399375 pmcid: 3906539 doi: 10.1161/STROKEAHA.113.004059
Satizabal CL, Zhu Y-C, Dufouil C, Tzourio C. Inflammatory proteins and the severity of dilated virchow-robin spaces in the elderly. J Alzheimer’s Dis. 2012;33(2):323–8 Available from: https://www.medra.org/servlet/aliasResolver?alias=iospressanddoi=https://doi.org/10.3233/JAD-2012-120874 .
doi: 10.3233/JAD-2012-120874
Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):1–12.
doi: 10.1126/scitranslmed.3003748
Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016–24. https://doi.org/10.1016/S1474-4422(18)30318-1 .
doi: 10.1016/S1474-4422(18)30318-1 pubmed: 30353860 pmcid: 6261373
Tarasoff-Conway JM, Carare RO, Osorio RS, Glodzik L, Butler T, Fieremans E, et al. Clearance systems in the brain - Implications for Alzheimer disease. Nat Rev Neurol. 2015;11(8):457–70.
pubmed: 26195256 pmcid: 4694579 doi: 10.1038/nrneurol.2015.119
Braun M, Iliff JJ. The impact of neurovascular, blood-brain barrier, and glymphatic dysfunction in neurodegenerative and metabolic diseases. In: International Review of Neurobiology . 1st ed. Elsevier Inc.; 2020. p. 413–36. https://doi.org/10.1016/bs.irn.2020.02.006
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways. Nat Rev Neurol. 2020;16(1):30–42. https://doi.org/10.1038/s41582-019-0281-2 .
doi: 10.1038/s41582-019-0281-2 pubmed: 31827267
Vilor-Tejedor N, Ciampa I, Operto G, Falcón C, Suárez-Calvet M, Crous-Bou M, et al. Perivascular spaces are associated with tau pathophysiology and synaptic dysfunction in early Alzheimer’s continuum. Alzheimers Res Ther. 2021;13(1):135 Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-021-00878-5 .
pubmed: 34353353 pmcid: 8340485 doi: 10.1186/s13195-021-00878-5
Wang ML, Yu MM, Wei XE, Li WB, Li YH. Association of enlarged perivascular spaces with Aβ and tau deposition in cognitively normal older population. Neurobiol Aging. 2021;100:32–8 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0197458020304255 .
pubmed: 33477009 doi: 10.1016/j.neurobiolaging.2020.12.014
Charidimou A, Boulouis G, Pasi M, Auriel E, van Etten ES, Haley K, et al. MRI-visible perivascular spaces in cerebral amyloid angiopathy and hypertensive arteriopathy. Neurology. 2017;88(12):1157–64 Available from: https://www.neurology.org/lookup/doi/10.1212/WNL.0000000000003746 .
pubmed: 28228568 pmcid: 5373782 doi: 10.1212/WNL.0000000000003746
Perosa V, Oltmer J, Munting LP, Freeze WM, Auger CA, Scherlek AA, et al. Perivascular space dilation is associated with vascular amyloid-β accumulation in the overlying cortex. Acta Neuropathol. 2022;143(3):331–48. https://doi.org/10.1007/s00401-021-02393-1 .
doi: 10.1007/s00401-021-02393-1 pubmed: 34928427
Van Veluw SJ, Biessels GJ, Bouvy WH, Spliet WGM, Zwanenburg JJM, Luijten PR, et al. Cerebral amyloid angiopathy severity is linked to dilation of juxtacortical perivascular spaces. J Cereb Blood Flow Metab. 2016;36(3):576–80.
pubmed: 26661250 doi: 10.1177/0271678X15620434
Sepehrband F, Barisano G, Sheikh-Bahaei N, Choupan J, Cabeen RP, Lynch KM, et al. Volumetric distribution of perivascular space in relation to mild cognitive impairment. Neurobiol Aging. 2021;99:28–43.
pubmed: 33422892 doi: 10.1016/j.neurobiolaging.2020.12.010
Banerjee G, Kim HJ, Fox Z, Jäger HR, Wilson D, Charidimou A, et al. MRI-visible perivascular space location is associated with Alzheimer’s disease independently of amyloid burden. Brain. 2017;140(4):1107–16 Available from: https://academic.oup.com/brain/article/140/4/1107/3003279 .
pubmed: 28335021 doi: 10.1093/brain/awx003
Ramirez J, Berezuk C, McNeely AA, Scott CJM, Gao F, Black SE. Visible virchow-robin spaces on magnetic resonance imaging of alzheimer’s disease patients and normal elderly from the sunnybrook dementia study. J Alzheimer’s Dis. 2014;43(2):415–24 Available from: https://www.medra.org/servlet/aliasResolver?alias=iospressanddoi=10.3233/JAD-132528 .
doi: 10.3233/JAD-132528
Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018;14(4):535–62. https://doi.org/10.1016/j.jalz.2018.02.018 .
doi: 10.1016/j.jalz.2018.02.018
Sweeney MD, Kisler K, Montagne A, Toga AW, Zlokovic BV. The role of brain vasculature in neurodegenerative disorders. Nat Neurosci. 2018;21(10):1318–31. https://doi.org/10.1038/s41593-018-0234-x .
doi: 10.1038/s41593-018-0234-x pubmed: 30250261 pmcid: 6198802
Gertje EC, van Westen D, Panizo C, Mattsson-Carlgren N, Hansson O. Association of enlarged perivascular spaces and measures of small vessel and Alzheimer disease. Neurol. 2021;96:193–202.
Jeong SH, Cha J, Park M, Jung JH, Ye BS, Sohn YH, et al. Association of Enlarged Perivascular Spaces With Amyloid Burden and Cognitive Decline in Alzheimer Disease Continuum. Neurology. 2022;99(16):E1791–802.
pubmed: 35985826 doi: 10.1212/WNL.0000000000200989
Smith EE, Biessels GJ, De Guio F, de Leeuw FE, Duchesne S, Düring M, et al. Harmonizing brain magnetic resonance imaging methods for vascular contributions to neurodegeneration. Alzheimer’s Dementia: Diagn Assess Dis Monit. 2019;11:191–204 Elsevier Inc.
Luo X, Jiaerken Y, Yu X, Huang P, Qiu T, Jia Y, et al. Associations between APOE genotype and cerebral small-vessel disease: A longitudinal study. Oncotarget. 2017;8(27):44477–89.
pubmed: 28574812 pmcid: 5546495 doi: 10.18632/oncotarget.17724
Barnes A, Ballerini L, Valdés Hernández M del C, Chappell FM, Muñoz Maniega S, Meijboom R, et al. Topological relationships between perivascular spaces and progression of white matter hyperintensities: A pilot study in a sample of the Lothian Birth Cohort 1936. Front Neurol. 2022;13. Available from: https://www.frontiersin.org/articles/10.3389/fneur.2022.889884/full .
Benjamin P, Trippier S, Lawrence AJ, Lambert C, Zeestraten E, Williams OA, et al. Lacunar infarcts, but not perivascular spaces, are predictors of cognitive decline in cerebral small-vessel disease. Stroke. 2018;49(3):586–93.
pubmed: 29438074 pmcid: 5832012 doi: 10.1161/STROKEAHA.117.017526
Jessen F, Spottke A, Boecker H, Brosseron F, Buerger K, Catak C, et al. Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer’s disease (DELCODE). Alzheimer’s Res Ther. 2018;10(1):1–10.
Bernal J, Schreiber S, Menze I, Ostendorf A, Pfister M, Geisendörfer J, et al. Arterial hypertension and β-amyloid accumulation have spatially overlapping effects on posterior white matter hyperintensity volume: a cross-sectional study. Alzheimers Res Ther. 2023;15(1):97 Available from: https://alzres.biomedcentral.com/articles/10.1186/s13195-023-01243-4 .
pubmed: 37226207 pmcid: 10207740 doi: 10.1186/s13195-023-01243-4
Jessen F, Wolfsgruber S, Kleineindam L, Spottke A, Altenstein S, Bartels C, et al. Subjective cognitive decline and stage 2 of Alzheimer disease in patients from memory centers. Alzheimer’s Dement. 2023;19(2):487–97 Available from: https://onlinelibrary.wiley.com/doi/10.1002/alz.12674 .
doi: 10.1002/alz.12674
Puonti O, Iglesias JE, Van Leemput K. Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling. Neuroimage. 2016;143:235–49. https://doi.org/10.1016/j.neuroimage.2016.09.011 .
doi: 10.1016/j.neuroimage.2016.09.011 pubmed: 27612647
Dubost F, Yilmaz P, Adams H, Bortsova G, Ikram MA, Niessen W, et al. Enlarged perivascular spaces in brain MRI: Automated quantification in four regions. Neuroimage. 2018;2019(185):534–44. https://doi.org/10.1016/j.neuroimage.2018.10.026 .
doi: 10.1016/j.neuroimage.2018.10.026
Huang P, Zhu Z, Zhang R, Wu X, Jiaerken Y, Wang S, et al. Factors associated with the dilation of perivascular space in healthy elderly subjects. Front Aging Neurosci. 2021;13(March):1–9 Available from: https://www.frontiersin.org/articles/10.3389/fnagi.2021.624732/full .
Zeng Q, Li K, Luo X, Wang S, Xu X, Jiaerken Y, et al. The association of enlarged perivascular space with microglia-related inflammation and Alzheimer’s pathology in cognitively normal elderly. Neurobiol Dis. 2022;170(May):105755 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996122001474 .
pubmed: 35577066 doi: 10.1016/j.nbd.2022.105755
Valdés Hernández MDC, Ballerini L, Glatz, A, Aribisala BS, Bastin ME, Dickie DA, Duarte Coello R, Munoz Maniega S, Wardlaw JM. Step-by-step pipeline for segmenting enlarged perivascular spaces from 3D T2-weighted MRI, 2018-2023 [software]. University of Edinburgh. College of Medicine and Veterinary Medicine. Centre for Clinical Brain Scie. 2023. https://doi.org/10.7488/ds/7486 .
Valdés Hernández M del C, Duarte Coello R, Xu W, Bernal J, Cheng Y, Ballerini L, et al. Influence of threshold selection and image sequence in in-vivo segmentation of enlarged perivascular spaces. J Neurosci Methods. 2024;403(December 2023):110037. Available from: https://linkinghub.elsevier.com/retrieve/pii/S016502702300256X
Potter GM, Chappell FM, Morris Z, Wardlaw JM. Cerebral perivascular spaces visible on magnetic resonance imaging: Development of a qualitative rating scale and its observer reliability. Cerebrovasc Dis. 2015;39(3–4):224–31.
pubmed: 25823458 pmcid: 4386144 doi: 10.1159/000375153
Duering M, Biessels GJ, Brodtmann A, Chen C, Cordonnier C, de Leeuw F-E, et al. Neuroimaging standards for research into small vessel disease—advances since 2013. Lancet Neurol. 2023;22(7):602–18 Available from: https://linkinghub.elsevier.com/retrieve/pii/S147444222300131X .
pubmed: 37236211 doi: 10.1016/S1474-4422(23)00131-X
Frangi AF, Niessen WJ, Vincken KL, Viergever MA. Multiscale vessel enhancement filtering. In: Lecture Notes in Computer Science. 1998. p. 130–7. Available from: http://link.springer.com/10.1007/BFb0056195 .
Ballerini L, Lovreglio R, Valdés Hernández MDC, Ramirez J, MacIntosh BJ, Black SE, et al. Perivascular Spaces Segmentation in Brain MRI Using Optimal 3D Filtering. Sci Rep. 2018;8(1):1–11.
doi: 10.1038/s41598-018-19781-5
Bernal J, Valdés-Hernández MDC, Escudero J, Duarte R, Ballerini L, Bastin ME, et al. Assessment of perivascular space filtering methods using a three dimensional computational model. Magn Reson Imaging [Internet]. 2022;93(April):33–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0730725X22001345 .
Valdés Hernández M, Piper RJ, Wang X, Deary IJ, Wardlaw JM. Towards the automatic computational assessment of enlarged perivascular spaces on brain magnetic resonance images: a systematic review. J Magn Reson Imaging. 2013;38(4):774–85 Available from: https://onlinelibrary.wiley.com/doi/10.1002/jmri.24047 .
doi: 10.1002/jmri.24047
Singer JD, Willett JB. A Framework for Investigating Change over Time. In: Applied Longitudinal Data Analysis. Oxford University PressNew York; 2003. p. 3–15. Available from: https://academic.oup.com/book/41753/chapter/354169957 .
Curran PJ, Obeidat K, Losardo D. Twelve frequently asked questions about growth curve modeling. J Cogn Dev. 2010;11(2):121–36. https://doi.org/10.1080/15248371003699969 .
doi: 10.1080/15248371003699969 pubmed: 21743795 pmcid: 3131138
Ghisletta P, Renaud O, Jacot N, Courvoisier D. Linear mixed-effects and latent curve models for longitudinal life course analyses. In: A life course perspective on health trajectories and transitions. 2015. p. 155–78. Available from: http://link.springer.com/10.1007/978-3-319-20484-0_8 .
Guillaume B, Hua X, Thompson PM, Waldorp L, Nichols TE. Fast and accurate modelling of longitudinal and repeated measures neuroimaging data. Neuroimage. 2014;94:287–302. https://doi.org/10.1016/j.neuroimage.2014.03.029 .
doi: 10.1016/j.neuroimage.2014.03.029 pubmed: 24650594
Van der Meer T, Te Grotenhuis M, Pelzer B. Influential cases in multilevel modeling: a methodological comment. Am Sociol Rev. 2010;75(1):173–8 Available from: http://journals.sagepub.com/10.1177/0003122409359166 .
doi: 10.1177/0003122409359166
R Core Team. R: A language and environment for statistical computing. 2020.
Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al. User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.
pubmed: 16545965 doi: 10.1016/j.neuroimage.2006.01.015
Brudfors M, Balbastre Y, Flandin G, Nachev P, Ashburner J. Flexible Bayesian modelling for nonlinear image registration. 2020. Available from: http://arxiv.org/abs/2006.02338 .
Brudfors M, Balbastre Y, Ashburner J. Groupwise Multimodal Image Registration Using Joint Total Variation. Commun Comput Inf Sci. 2020;1248CCIS:184–94.
Ashburner J, Friston KJ. Diffeomorphic registration using geodesic shooting and Gauss-Newton optimisation. Neuroimage. 2011;55(3):954–67. https://doi.org/10.1016/j.neuroimage.2010.12.049 .
doi: 10.1016/j.neuroimage.2010.12.049 pubmed: 21216294
Markov NT, Lindbergh CA, Staffaroni AM, Perez K, Stevens M, Nguyen K, et al. Age-related brain atrophy is not a homogenous process: different functional brain networks associate differentially with aging and blood factors. Proc Natl Acad Sci U S A. 2022;119(49):e2207181119.
pubmed: 36459652 pmcid: 9894212 doi: 10.1073/pnas.2207181119
Evans TE, Knol MJ, Schwingenschuh P, Wittfeld K, Hilal S, Ikram MA, et al. Determinants of perivascular spaces in the general population. Neurology. 2023;100(2):e107-22 Available from: https://journals.lww.com/10.1212/WNL.0000000000201349 .
pubmed: 36253103 pmcid: 9841448 doi: 10.1212/WNL.0000000000201349
Martinez-Ramirez S, Pontes-Neto OM, Dumas AP, Auriel E, Halpin A, Quimby M, et al. Topography of dilated perivascular spaces in subjects from a memory clinic cohort. Neurology. 2013;80(17):1551–6 Available from: https://www.neurology.org/lookup/doi/10.1212/WNL.0b013e31828f1876 .
pubmed: 23553482 pmcid: 3662325 doi: 10.1212/WNL.0b013e31828f1876
Kern KC, Nasrallah IM, Bryan RN, Reboussin DM, Wright CB. Intensive systolic blood pressure treatment remodels brain perivascular spaces: a secondary analysis of the Systolic Pressure Intervention Trial (SPRINT). NeuroImage Clin. 2023;40:103513. https://doi.org/10.1016/j.nicl.2023.103513 .
doi: 10.1016/j.nicl.2023.103513 pubmed: 37774646 pmcid: 10540038
Loos CMJ, Klarenbeek P, van Oostenbrugge RJ, Staals J. Association between perivascular spaces and progression of white matter hyperintensities in lacunar stroke patients. Hendrikse J, editor. PLoS One. 2015;10(9):e0137323. https://doi.org/10.1371/journal.pone.0137323 .
doi: 10.1371/journal.pone.0137323 pubmed: 26352265 pmcid: 4564273
Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol. 2019;18(7):684–96. https://doi.org/10.1016/S1474-4422(19)30079-1 .
doi: 10.1016/S1474-4422(19)30079-1 pubmed: 31097385
Potter GM, Doubal FN, Jackson CA, Chappell FM, Sudlow CL, Dennis MS, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke. 2015;10(3):376–81 Available from: http://journals.sagepub.com/doi/10.1111/ijs.12054 .
pubmed: 23692610 doi: 10.1111/ijs.12054
Zhang X, Ding L, Yang L, Qin W, Yuan J, Li S, et al. Brain atrophy correlates with severe enlarged perivascular spaces in basal ganglia among lacunar stroke patients. PLoS ONE. 2016;11(2):1–9.
doi: 10.1371/journal.pone.0149593
Reddy OC, van der Werf YD. The sleeping brain: Harnessing the power of the glymphatic system through lifestyle choices. Brain Sci. 2020;10(11):1–16.
doi: 10.3390/brainsci10110868
Duperron MG, Knol MJ, Le Grand Q, Evans TE, Mishra A, Tsuchida A, et al. Genomics of perivascular space burden unravels early mechanisms of cerebral small vessel disease. Nat Med. 2023;29(4):950–62 https://www.nature.com/articles/s41591-023-02268-w .
pubmed: 37069360 pmcid: 10115645 doi: 10.1038/s41591-023-02268-w
Ineichen BV, Okar SV, Proulx ST, Engelhardt B, Lassmann H, Reich DS. Perivascular spaces and their role in neuroinflammation. Neuron. 2022;110(21):3566–81. https://doi.org/10.1016/j.neuron.2022.10.024 .
doi: 10.1016/j.neuron.2022.10.024 pubmed: 36327898 pmcid: 9905791
Mogensen FLH, Delle C, Nedergaard M. The glymphatic system (En)during inflammation. Int J Mol Sci. 2021;22(14):1–20.
doi: 10.3390/ijms22147491
Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol. 2021;17(3):157–72. https://doi.org/10.1038/s41582-020-00435-y .
doi: 10.1038/s41582-020-00435-y pubmed: 33318676
Low A, Mak E, Malpetti M, Passamonti L, Nicastro N, Stefaniak JD, et al. In vivo neuroinflammation and cerebral small vessel disease in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry. 2021;92(1):45–52 Available from: https://jnnp.bmj.com/lookup/10.1136/jnnp-2020-323894 .
doi: 10.1136/jnnp-2020-323894
Sweeney MD, Sagare AP, Zlokovic BV. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol. 2018;14(3):133–50. https://doi.org/10.1038/nrneurol.2017.188 .
doi: 10.1038/nrneurol.2017.188 pubmed: 29377008 pmcid: 5829048
Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14(4):388–405 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1474442215700165 .
pubmed: 25792098 pmcid: 5909703 doi: 10.1016/S1474-4422(15)70016-5
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement Transl Res Clin Interv. 2018;4:575–90. https://doi.org/10.1016/j.trci.2018.06.014 .
doi: 10.1016/j.trci.2018.06.014
Boespflug EL, Schwartz DL, Lahna D, Pollock J, Iliff JJ, Kaye JA, et al. MR imaging-based multimodal autoidentification of perivascular spaces (mMAPS): Automated morphologic segmentation of enlarged perivascular spaces at clinical field strength. Radiology. 2018;286(2):632–42.
pubmed: 28853674 doi: 10.1148/radiol.2017170205
Hilal S, Tan CS, Adams HHH, Habes M, Mok V, Venketasubramanian N, et al. Enlarged perivascular spaces and cognition. Neurology. 2018;91(9):e832–42.
pubmed: 30068634 pmcid: 6133622 doi: 10.1212/WNL.0000000000006079
Wuerfel J, Haertle M, Waiczies H, Tysiak E, Bechmann I, Wernecke KD, et al. Perivascular spaces- -MRI marker of inflammatory activity in the brain? Brain. 2008;131(9):2332–40 Available from: https://academic.oup.com/brain/article-lookup/doi/10.1093/brain/awn171 .
pubmed: 18676439 doi: 10.1093/brain/awn171

Auteurs

Inga Menze (I)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany. inga.menze@dzne.de.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany. inga.menze@dzne.de.

Jose Bernal (J)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.
Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK.

Pinar Kaya (P)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.

Çağla Aki (Ç)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.

Malte Pfister (M)

Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.

Jonas Geisendörfer (J)

Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.

Renat Yakupov (R)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.

Roberto Duarte Coello (RD)

Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK.

Maria D C Valdés-Hernández (MDC)

Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK.

Michael T Heneka (MT)

Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, 6 Avenue du Swing 4367 , Esch-Belval, Luxembourg.

Frederic Brosseron (F)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.

Matthias C Schmid (MC)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.
Institute for Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.

Wenzel Glanz (W)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.

Enise I Incesoy (EI)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.
Department of Psychiatry and Psychotherapy, University Hospital Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.

Michaela Butryn (M)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.

Ayda Rostamzadeh (A)

Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany.

Dix Meiberth (D)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.
Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany.

Oliver Peters (O)

German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany.
Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.

Lukas Preis (L)

Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.

Dominik Lammerding (D)

Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.

Daria Gref (D)

Institute of Psychiatry and Psychotherapy, Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.

Josef Priller (J)

UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK.
German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany.
Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany.
School of Medicine, Department of Psychiatry and Psychotherapy, Technical University of Munich, Ismaninger Str. 22, Munich, 81675, Germany.

Eike J Spruth (EJ)

German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany.
Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany.

Slawek Altenstein (S)

German Centre for Neurodegenerative Diseases (DZNE), Charitéplatz 1, Berlin, 10117, Germany.
Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany.

Andrea Lohse (A)

Department of Psychiatry and Psychotherapy, Charité, Charitéplatz 1, Berlin, 10117, Germany.

Stefan Hetzer (S)

Berlin Center for Advanced Neuroimaging, Charité, Charitéplatz 1, Berlin, 10117, Germany.

Anja Schneider (A)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.
Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany.

Klaus Fliessbach (K)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.
Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Venusberg-Campus 1, Bonn, 53127, Germany.

Okka Kimmich (O)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.

Ina R Vogt (IR)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.

Jens Wiltfang (J)

German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany.
Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany.
Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Aveiro, 3810-193, Portugal.

Claudia Bartels (C)

Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany.

Björn H Schott (BH)

German Centre for Neurodegenerative Diseases (DZNE), Von-Siebold-Str. 3a, 37075, Goettingen, Germany.
Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany.
Leibniz Institute for Neurobiology, Brenneckestraße 6, Magdeburg, 39118, Germany.

Niels Hansen (N)

Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Von-Siebold-Str. 5, Goettingen, 37075, Germany.

Peter Dechent (P)

Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University Goettingen, Robert-Koch-Straße 40, Göttingen, 37075, Germany.

Katharina Buerger (K)

German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany.
Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany.

Daniel Janowitz (D)

Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Feodor-Lynen-Strasse 17, Munich, 81377, Germany.

Robert Perneczky (R)

German Centre for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Strasse 17, Munich, 81377, Germany.
Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany.
Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, Munich, 81377, Germany.
Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, Charing Cross Hospital, St Dunstan's Road, London, W6 8RP, UK.

Boris-Stephan Rauchmann (BS)

Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Nußbaumstraße 7, Munich, München, 80336 , Germany.
Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, 385a Glossop Rd, Sheffield, Broomhall, Sheffield, S10 2HQ, UK.
Department of Neuroradiology, University Hospital LMU, Marchioninistr. 15, Munich, 81377, Germany.

Stefan Teipel (S)

German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany.
Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany.

Ingo Kilimann (I)

German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany.
Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany.

Doreen Goerss (D)

German Centre for Neurodegenerative Diseases (DZNE), Gehlsheimer Straße 20, Rostock, 18147, Germany.
Department of Psychosomatic Medicine, Rostock University Medical Center, Gehlsheimer Straße 20, Rostock, 18147, Germany.

Christoph Laske (C)

German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany.
Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076, Germany.

Matthias H Munk (MH)

German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany.
Department of Psychiatry and Psychotherapy, University of Tübingen, Osianderstraße 24, Tübingen, 72076 , Germany.

Carolin Sanzenbacher (C)

German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany.

Petra Hinderer (P)

German Centre for Neurodegenerative Diseases (DZNE), Otfried-Müller-Straße 23, Tübingen, 72076, Germany.

Klaus Scheffler (K)

Department for Biomedical Magnetic Resonance, University of Tübingen, Otfried-Müller-Straße 51, Tübingen, 72076, Germany.

Annika Spottke (A)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.
Department of Neurology, University of Bonn, Venusberg-Campus 1, Bonn, 53127, Germany.

Nina Roy-Kluth (N)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.

Falk Lüsebrink (F)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.

Katja Neumann (K)

Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.

Joanna Wardlaw (J)

Centre for Clinical Brain Sciences, The University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
UK Dementia Research Institute Centre at the University of Edinburgh, Edinburgh Bioquarter, 49 Little France Crescent, Edinburgh Bioquarter, Edinburgh, EH16 4SB, UK.

Frank Jessen (F)

German Centre for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, Bonn, 53127, Germany.
Department of Psychiatry, Medical Faculty, University of Cologne, Kerpener Strasse 62, Cologne, 50924, Germany.
Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Straße 26, Cologne, 50931, Germany.

Stefanie Schreiber (S)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Department of Neurology, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.

Emrah Düzel (E)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.

Gabriel Ziegler (G)

German Centre for Neurodegenerative Diseases (DZNE), Leipziger Str. 44, Magdeburg, 39120, Germany.
Institute of Cognitive Neurology and Dementia Research, Otto-Von-Guericke University Magdeburg, Leipziger Str. 44, Magdeburg, 39120, Germany.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH