Exploring the complexity of genome size reduction in angiosperms.
Abiotic stress
C-value
Darwin’s abominable mystery
Genome shrinkage
Genome size reduction
Phosphorus and nitrogen shortage
Polyploid
Journal
Plant molecular biology
ISSN: 1573-5028
Titre abrégé: Plant Mol Biol
Pays: Netherlands
ID NLM: 9106343
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
23
05
2024
accepted:
09
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
The genome sizes of angiosperms decreased significantly more than the genome sizes of their ancestors (pteridophytes and gymnosperms). Decreases in genome size involve a highly complex process, with remnants of the genome size reduction scattered across the genome and not directly linked to specific genomic structures. This is because the associated mechanisms operate on a much smaller scale than the mechanisms mediating increases in genome size. This review thoroughly summarizes the available literature regarding the molecular mechanisms underlying genome size reductions and introduces Utricularia gibba and Arabidopsis thaliana as model species for the examination of the effects of these molecular mechanisms. Additionally, we propose that phosphorus deficiency and drought stress are the major external factors contributing to decreases in genome size. Considering these factors affect almost all land plants, angiosperms likely gained the mechanisms for genome size reductions. These environmental factors may affect the retention rates of deletions, while also influencing the mutation rates of deletions via the functional diversification of the proteins facilitating double-strand break repair. The biased retention and mutation rates of deletions may have synergistic effects that enhance deletions in intergenic regions, introns, transposable elements, duplicates, and repeats, leading to a rapid decrease in genome size. We suggest that these selection pressures and associated molecular mechanisms may drive key changes in angiosperms during recurrent cycles of genome size decreases and increases.
Identifiants
pubmed: 39485504
doi: 10.1007/s11103-024-01518-w
pii: 10.1007/s11103-024-01518-w
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
121Subventions
Organisme : Grant-in-Aid for Early-Career Scientists
ID : 23K13932
Informations de copyright
© 2024. The Author(s).
Références
Acquisti C, Elser JJ, Kumar S (2009) Ecological nitrogen limitation shapes the DNA composition of plant genomes. Mol Biol Evol 26:953–956. https://doi.org/10.1093/molbev/msp038
doi: 10.1093/molbev/msp038
pubmed: 19255140
pmcid: 2727375
Adams MA, Turnbull TL, Sprent JI, Buchmann N (2016) Legumes are different: Leaf nitrogen, photosynthesis, and water use efficiency. Proc Natl Acad Sci U S A 113:4098–4103. https://doi.org/10.1073/pnas.1523936113
doi: 10.1073/pnas.1523936113
pubmed: 27035971
pmcid: 4839396
Anneberg TJ, Segraves KA (2020) Nutrient enrichment and neopolyploidy interact to increase lifetime fitness of Arabidopsis thaliana. Plant Soil 456:439–453. https://doi.org/10.1007/s11104-020-04727-6
doi: 10.1007/s11104-020-04727-6
Augusto L, Davies TJ, Delzon S, De Schrijver A (2014) The enigma of the rise of angiosperms: can we untie the knot? Ecol Lett 17:1326–1338. https://doi.org/10.1111/ele.12323
doi: 10.1111/ele.12323
pubmed: 24975818
Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA (2008) Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytol 179:975–986. https://doi.org/10.1111/j.1469-8137.2008.02528.x
doi: 10.1111/j.1469-8137.2008.02528.x
pubmed: 18564303
Bennett MD (2004) Perspectives on polyploidy in plants - ancient and neo. Biol J Linn Soc 82:411–423. https://doi.org/10.1111/j.1095-8312.2004.00328.x
doi: 10.1111/j.1095-8312.2004.00328.x
Bennetzen JL, Kellogg EA (1997) Do plants have a one-way ticket to genomic obesity? The plant cell. American Society of Plant Biologists, pp 1509–1514
Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Annals of botany. Oxford University Press, pp 127–132
Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK, Liu X, Gao D, Clevenger J, Dash S, Ren L, Moretzsohn MC, Shirasawa K, Huang W, Vidigal B, Abernathy B, Chu Y, Niederhuth CE, Umale P, Araujo AC, Kozik A, Kim KD, Burow MD, Varshney RK, Wang X, Zhang X, Barkley N, Guimaraes PM, Isobe S, Guo B, Liao B, Stalker HT, Schmitz RJ, Scheffler BE, Leal-Bertioli SC, Xun X, Jackson SA, Michelmore R, Ozias-Akins P (2016) The genome sequences of Arachis duranensis and Arachis Ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446. https://doi.org/10.1038/ng.3517
doi: 10.1038/ng.3517
pubmed: 26901068
Cardoso IL, Marques V (2018) Trinucleotide repeat diseases - anticipation diseases Journal of Clinical Genetics and Genomics. Pulsus Group
Cherry LM, Faulkner AJ, Grossberg LA, Balczon R (1989) Kinetochore size variation in mammalian chromosomes: an image analysis study with evolutionary implications. Journal of Cell Science
Chiruvella KK, Liang Z, Wilson TE (2013) Repair of double-strand breaks by end joining. Cold Spring Harb Perspect Biol 5:a012757. https://doi.org/10.1101/cshperspect.a012757
doi: 10.1101/cshperspect.a012757
pubmed: 23637284
pmcid: 3632057
Clark RM, Schweikert G, Toomajian C, Ossowski S, Zeller G, Shinn P, Warthmann N, Hu TT, Fu G, Hinds DA, Chen H, Frazer KA, Huson DH, Scholkopf B, Nordborg M, Ratsch G, Ecker JR, Weigel D (2007) Common sequence polymorphisms shaping genetic diversity in Arabidopsis thaliana. Science 317:338–342. https://doi.org/10.1126/science.1138632
doi: 10.1126/science.1138632
pubmed: 17641193
Clark J, Hidalgo O, Pellicer J, Liu H, Marquardt J, Robert Y, Christenhusz M, Zhang S, Gibby M, Leitch IJ, Schneider H (2016) Genome evolution of ferns: evidence for relative stasis of genome size across the fern phylogeny. New Phytol 210:1072–1082. https://doi.org/10.1111/nph.13833
doi: 10.1111/nph.13833
pubmed: 26756823
Cohen I, Rapaport T, Chalifa-Caspi V, Rachmilevitch S (2018) Synergistic effects of abiotic stresses in plants: a case study of nitrogen limitation and saturating light intensity in Arabidopsis thaliana. Physiol Plant 165(4):755–767. https://doi.org/10.1111/ppl.12765
Cui J, Wang X, Wei Z, Jin B (2022) Medicago truncatula (model legume), Medicago sativa (alfalfa), Medicago polymorpha (bur clover), and Medicago ruthenica. Trends Genet 38:782–783. https://doi.org/10.1016/j.tig.2022.03.005
doi: 10.1016/j.tig.2022.03.005
pubmed: 35361519
Daniel R, Greger JG, Katz RA, Taganov KD, Wu X, Kappes JC, Skalka AM (2004) Evidence that stable retroviral transduction and cell survival following DNA integration depend on components of the nonhomologous end joining repair pathway. Journal of virology. American Society for Microbiology Journals, pp 8573–8581
Davies TJ, Barraclough TG, Chase MW, Soltis PS, Soltis DE, Savolainen V (2004) Darwin’s abominable mystery: insights from a supertree of the angiosperms. Proc Natl Acad Sci U S A 101:1904–1909. https://doi.org/10.1073/pnas.0308127100
doi: 10.1073/pnas.0308127100
pubmed: 14766971
pmcid: 357025
de la Chaux N, Tsuchimatsu T, Shimizu KK, Wagner A (2012) The predominantly selfing plant Arabidopsis thaliana experienced a recent reduction in transposable element abundance compared to its outcrossing relative Arabidopsis lyrata. Mob DNA 3:2. https://doi.org/10.1186/1759-8753-3-2
doi: 10.1186/1759-8753-3-2
pubmed: 22313744
pmcid: 3292453
Devos KM, Brown JKM, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome research. Cold Spring Harbor Laboratory Press, pp 1075–1079
Dhadi SR, Krom N, Ramakrishna W (2009) Genome-wide comparative analysis of putative bidirectional promoters from rice. Arabidopsis Populus Gene 429:65–73. https://doi.org/10.1016/j.gene.2008.09.034
doi: 10.1016/j.gene.2008.09.034
pubmed: 18973799
Dhadi SR, Deshpande A, Driscoll K, Ramakrishna W (2013) Major cis-regulatory elements for rice bidirectional promoter activity reside in the 5′-untranslated regions Gene. Elsevier, pp 400–410
Dmitrieva NI, Cui K, Kitchaev DA, Zhao K, Burg MB (2011) DNA double-strand breaks induced by high NaCl occur predominantly in gene deserts. Proc Natl Acad Sci U S A 108:20796–20801. https://doi.org/10.1073/pnas.1114677108
doi: 10.1073/pnas.1114677108
pubmed: 22106305
pmcid: 3251130
Dodsworth S, Chase MW, Leitch AR (2016) Is post-polyploidization diploidization the key to the evolutionary success of angiosperms? Bot J Linn Soc 180:1–5. https://doi.org/10.1111/boj.12357
doi: 10.1111/boj.12357
Dovrat G, Bakhshian H, Masci T, Sheffer E (2020) The nitrogen economic spectrum of legume stoichiometry and fixation strategy. New Phytol 227:365–375. https://doi.org/10.1111/nph.16543
doi: 10.1111/nph.16543
pubmed: 32175592
Du K, Stock M, Kneitz S, Klopp C, Woltering JM, Adolfi MC, Feron R, Prokopov D, Makunin A, Kichigin I, Schmidt C, Fischer P, Kuhl H, Wuertz S, Gessner J, Kloas W, Cabau C, Iampietro C, Parrinello H, Tomlinson C, Journot L, Postlethwait JH, Braasch I, Trifonov V, Warren WC, Meyer A, Guiguen Y, Schartl M (2020a) The sterlet sturgeon genome sequence and the mechanisms of segmental rediploidization. Nat Ecol Evol 4:841–852. https://doi.org/10.1038/s41559-020-1166-x
doi: 10.1038/s41559-020-1166-x
pubmed: 32231327
pmcid: 7269910
Du Y, Hase Y, Satoh K, Shikazono N (2020b) Characterization of gamma irradiation-induced mutations in Arabidopsis mutants deficient in non-homologous end joining. J Radiat Res 61:639–647. https://doi.org/10.1093/jrr/rraa059
doi: 10.1093/jrr/rraa059
pubmed: 32766789
pmcid: 7482170
Ezoe A, Shirai K, Hanada K (2021) Degree of Functional Divergence in Duplicates Is Associated with Distinct Roles in Plant Evolution. In: Purugganan M(ed) Molecular Biology and Evolution, pp 1447–1459
Ezoe A, Todaka D, Utsumi Y, Takahashi S, Kawaura K, Seki M (2024) Decrease in purifying selection pressures on wheat homoeologous genes: tetraploidization vs hexaploidization. bioRxiv. https://doi.org/10.1101/2024.04.07.587660
doi: 10.1101/2024.04.07.587660
Franks PJ, Beerling DJ (2009) Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proc Natl Acad Sci U S A 106:10343–10347. https://doi.org/10.1073/pnas.0904209106
doi: 10.1073/pnas.0904209106
pubmed: 19506250
pmcid: 2693183
Freeling M (2009) Bias in Plant Gene Content Following Different Sorts of Duplication: Tandem, Whole-Genome, Segmental, or by Transposition Annual Review of Plant Biology, pp 433–453
Galvez-Galvan A, Garrido-Ramos MA, Prieto P (2024) Bread wheat satellitome: a complex scenario in a huge genome. Plant Mol Biol 114:8. https://doi.org/10.1007/s11103-023-01404-x
doi: 10.1007/s11103-023-01404-x
pubmed: 38291213
pmcid: 10827815
Gao M, Wei W, Li MM, Wu YS, Ba Z, Jin KX, Li MM, Liao YQ, Adhikari S, Chong Z, Zhang T, Guo CX, Tang TS, Zhu BT, Xu XZ, Mailand N, Yang YG, Qi Y, Rendtlew Danielsen JM (2014) Ago2 facilitates Rad51 recruitment and DNA double-strand break repair by homologous recombination. Cell Res 24:532–541. https://doi.org/10.1038/cr.2014.36
doi: 10.1038/cr.2014.36
pubmed: 24662483
pmcid: 4011338
Ghezraoui H, Oliveira C, Becker JR, Bilham K, Moralli D, Anzilotti C, Fischer R, Deobagkar-Lele M, Sanchiz-Calvo M, Fueyo-Marcos E, Bonham S, Kessler BM, Rottenberg S, Cornall RJ, Green CM, Chapman JR (2018) 53BP1 cooperation with the REV7–shieldin complex underpins DNA structure-specific NHEJ Nature. Nature Publishing Group, pp 122–127
Gross N, Maestre FT, Liancourt P, Berdugo M, Martin R, Gozalo B, Ochoa V, Delgado-Baquerizo M, Maire V, Saiz H, Soliveres S, Valencia E, Eldridge DJ, Guirado E, Jabot F, Asensio S, Gaitan JJ, Garcia-Gomez M, Martinez P, Martinez-Valderrama J, Mendoza BJ, Moreno-Jimenez E, Pescador DS, Plaza C, Pijuan IS, Abedi M, Ahumada RJ, Amghar F, Arroyo AI, Bahalkeh K, Bailey L, Ben Salem F, Blaum N, Boldgiv B, Bowker MA, Branquinho C, van den Brink L, Bu C, Canessa R, Castillo-Monroy ADP, Castro H, Castro P, Chibani R, Conceicao AA, Darrouzet-Nardi A, Davila YC, Deak B, Donoso DA, Duran J, Espinosa C, Fajardo A, Farzam M, Ferrante D, Franzese J, Fraser L, Gonzalez S, Gusman-Montalvan E, Hernandez-Hernandez RM, Holzel N, Huber-Sannwald E, Jadan O, Jeltsch F, Jentsch A, Ju M, Kaseke KF, Kindermann L, le Roux P, Linstadter A, Louw MA, Mabaso M, Maggs-Kolling G, Makhalanyane TP, Issa OM, Manzaneda AJ, Marais E, Margerie P, Hughes FM, Messeder JVS, Mora JP, Moreno G, Munson SM, Nunes A, Oliva G, Onatibia GR, Peter G, Pueyo Y, Quiroga RE, Ramirez-Iglesias E, Reed SC, Rey PJ, Reyes Gomez VM, Rodriguez A, Rolo V, Rubalcaba JG, Ruppert JC, Sala O, Salah A, Sebei PJ, Stavi I, Stephens C, Teixido AL, Thomas AD, Throop HL, Tielborger K, Travers S, Undrakhbold S, Val J, Valko O, Velbert F, Wamiti W, Wang L, Wang D, Wardle GM, Wolff P, Yahdjian L, Yari R, Zaady E, Zeberio JM, Zhang Y, Zhou X, Le Bagousse-Pinguet Y (2024) Unforeseen plant phenotypic diversity in a dry and grazed world. Nature 632:808–814. https://doi.org/10.1038/s41586-024-07731-3
Guignard MS, Nichols RA, Knell RJ, Macdonald A, Romila C-A, Trimmer M, Leitch IJ, Leitch AR (2016) Genome size and ploidy influence angiosperm species’. biomass under nitrogen and phosphorus limitation New Phytologist, pp 1195–1206
Guo C, Du J, Wang L, Yang S, Mauricio R, Tian D, Gu T (2016a) Insertions/Deletions-Associated Nucleotide Polymorphism in Arabidopsis thaliana. Front Plant Sci 7:1792. https://doi.org/10.3389/fpls.2016.01792
doi: 10.3389/fpls.2016.01792
pubmed: 27965694
pmcid: 5127803
Guo J, Gu L, Leffak M, Li G-M (2016b) MutSβ promotes trinucleotide repeat expansion by recruiting DNA polymerase β to nascent (CAG)n or (CTG)n hairpins for error-prone DNA synthesis cell research. Nature Publishing Group, pp 775–786
Hamim I, Sekine KT, Komatsu K (2022) How do emerging long-read sequencing technologies function in transforming the plant pathology research landscape? Plant Mol Biol 110:469–484. https://doi.org/10.1007/s11103-022-01305-5
doi: 10.1007/s11103-022-01305-5
pubmed: 35962900
Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu S-H (2008) Importance of Lineage-Specific Expansion of Plant Tandem Duplicates in the adaptive response. to Environmental Stimuli PLANT PHYSIOLOGY, pp 993–1003
Hanada K, Vallejo V, Nobuta K, Slotkin RK, Lisch D, Meyers BC, Shiu S-H, Jiang N (2009) The functional role of Pack-MULEs in Rice inferred from purifying selection. and Expression Profile THE PLANT CELL ONLINE, pp 25–38
Hanada K, Sawada Y, Kuromori T, Klausnitzer R, Saito K, Toyoda T, Shinozaki K, Li W-H, Hirai MY (2011) Functional Compensation of Primary and Secondary Metabolites by Duplicate Genes in Arabidopsis thaliana Molecular Biology and Evolution, pp 377–382
Hawkins JS, Proulx SR, Rapp RA, Wendel JF (2009) Rapid DNA loss as a counterbalance to genome expansion through retrotransposon proliferation in plants. Proc Natl Acad Sci 106(42):17811–17816. https://doi.org/10.1073/pnas.0904339106
He F, Chen WH, Collins S, Acquisti C, Goebel U, Ramos-Onsins S, Lercher MJ, de Meaux J (2010) Assessing the influence of adjacent gene orientation on the evolution of gene upstream regions in Arabidopsis thaliana. Genetics 185:695–701. https://doi.org/10.1534/genetics.110.114629
doi: 10.1534/genetics.110.114629
pubmed: 20233855
pmcid: 2881148
He S, He Z, Yang X, Baligar VC (2012) Chapter Three - Mechanisms of Nickel Uptake and Hyperaccumulation by Plants and Implications for Soil Remediation. In: Sparks DL(ed) Advances in Agronomy. Academic Press, pp 117–189
Hernandez I, Munne-Bosch S (2015) Linking phosphorus availability with photo-oxidative stress in plants. J Exp Bot 66:2889–2900. https://doi.org/10.1093/jxb/erv056
doi: 10.1093/jxb/erv056
pubmed: 25740928
Hessen DO, Jeyasingh PD, Neiman M, Weider LJ (2010) Genome streamlining and the elemental costs of growth. Trends Ecol Evol 25:75–80. https://doi.org/10.1016/j.tree.2009.08.004
doi: 10.1016/j.tree.2009.08.004
pubmed: 19796842
Hu TT, Pattyn P, Bakker EG, Cao J, Cheng J-F, Clark RM, Fahlgren N, Fawcett JA, Grimwood J, Gundlach H, Haberer G, Hollister JD, Ossowski S, Ottilar RP, Salamov AA, Schneeberger K, Spannagl M, Wang X, Yang L, Nasrallah ME, Bergelson J, Carrington JC, Gaut BS, Schmutz J, Mayer KFX, Van de Peer Y, Grigoriev IV, Nordborg M, Weigel D, Guo Y-L (2011) The Arabidopsis lyrata genome sequence and the basis of rapid genome size change. Nature genetics. NIH Public Access, pp 476–481
Ibarra-Laclette E, Lyons E, Hernández-Guzmán G, Pérez-Torres CA, Carretero-Paulet L, Chang T-H, Lan T, Welch AJ, Juárez MJA, Simpson J, Fernández-Cortés A, Arteaga-Vázquez M, Góngora-Castillo E, Acevedo-Hernández G, Schuster SC, Himmelbauer H, Minoche AE, Xu S, Lynch M, Oropeza-Aburto A, Cervantes-Pérez SA (2013) Jesús Ortega-Estrada M, Cervantes-Luevano JI, Michael TP, Mockler T, Bryant D, Herrera-Estrella A, Albert VA, Herrera-Estrella L Architecture and evolution of a minute plant genome Nature. Nature Publishing Group, pp 94–98
Janes G, von Wangenheim D, Cowling S, Kerr I, Band L, French AP, Bishopp A (2018) Cellular Patterning of Arabidopsis roots under low phosphate conditions. Frontiers in plant science. Frontiers Media SA, p 735
Kafi M, Khoshkholghsima NA, Liaghat A (2015) Evaluation of relative genome content and response of Tall Fescue Seedling under Drought stress collected in Iran. J Hortic Sci 29:134–141. https://doi.org/10.22067/jhorts4.v0i0.31417
doi: 10.22067/jhorts4.v0i0.31417
Kerkhoff Andrew J, Fagan William F, Elser James J, Enquist Brian J (2006) Phylogenetic and growth form variation in the scaling of Nitrogen and Phosphorus in the seed plants the American naturalist. The University of Chicago PressThe American Society of Naturalists, pp E103–E122
Kidwell MG (2002) Transposable elements and the evolution of genome size in eukaryotes. Genetica 115:49–63. https://doi.org/10.1023/a:1016072014259
doi: 10.1023/a:1016072014259
pubmed: 12188048
Kirik A, Salomon S, Puchta H (2000) Species-specific double-strand break repair and genome evolution in plants. EMBO journal. EMBO, pp 5562–5566
Knight CA, Molinari NA, Petrov DA (2005) The large genome constraint hypothesis: evolution, ecology and phenotype. Ann Bot 95:177–190. https://doi.org/10.1093/aob/mci011
doi: 10.1093/aob/mci011
pubmed: 15596465
pmcid: 4246716
Kumekawa N, Hosouchi T, Tsuruoka H, Kotani H (2001) The Size and Sequence Organization of the Centromeric Region of Arabidopsis thaliana Chromosome 4 DNA Research. Oxford University Press, pp 285–290
Lawson T, Vialet-Chabrand S (2019) Speedy stomata, photosynthesis and plant water use efficiency. New Phytol 221:93–98. https://doi.org/10.1111/nph.15330
doi: 10.1111/nph.15330
pubmed: 29987878
Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150(1):12–26. https://doi.org/10.1104/pp.108.134353
Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663. https://doi.org/10.1111/j.1095-8312.2004.00349.x
doi: 10.1111/j.1095-8312.2004.00349.x
Leitch AR, Leitch IJ (2012) Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytol 194:629–646. https://doi.org/10.1111/j.1469-8137.2012.04105.x
doi: 10.1111/j.1469-8137.2012.04105.x
pubmed: 22432525
Levinson G, Gutman GA (1987) Slipped-strand mispairing: a major mechanism for DNA sequence evolution. Mol Biol Evol 4:203–221. https://doi.org/10.1093/oxfordjournals.molbev.a040442
doi: 10.1093/oxfordjournals.molbev.a040442
pubmed: 3328815
Lu C, Chen J, Zhang Y, Hu Q, Su W, Kuang H (2012) Miniature inverted-repeat transposable elements (MITEs) have been accumulated through amplification bursts and play important roles in gene expression and species diversity in Oryza sativa. Mol Biol Evol 29(3):1005–1017. https://doi.org/10.1093/molbev/msr282
Lysak MA, Berr A, Pecinka A, Schmidt R, McBreen K, Schubert I (2006) Mechanisms of chromosome number reduction in Arabidopsis thaliana and related Brassicaceae species. Proc Natl Acad Sci U S A 103:5224–5229. https://doi.org/10.1073/pnas.0510791103
doi: 10.1073/pnas.0510791103
pubmed: 16549785
pmcid: 1458822
Ma H, Ding W, Chen Y, Zhou J, Chen W, Lan C, Mao H, Li Q, Yan W, Su H (2023) Centromere Plasticity with Evolutionary Conservation and Divergence uncovered by wheat 10 + genomes. Mol Biol Evol 40. https://doi.org/10.1093/molbev/msad176
Macas J, Novak P, Pellicer J, Cizkova J, Koblizkova A, Neumann P, Fukova I, Dolezel J, Kelly LJ, Leitch IJ (2015) In depth characterization of repetitive DNA in 23 plant genomes reveals sources of genome size variation in the Legume Tribe Fabeae. PLoS ONE 10:e0143424. https://doi.org/10.1371/journal.pone.0143424
doi: 10.1371/journal.pone.0143424
pubmed: 26606051
pmcid: 4659654
MacKintosh C, Ferrier DEK (2017) Recent advances in understanding the roles of whole genome duplications in evolution. F1000Res 6:1623. https://doi.org/10.12688/f1000research.11792.2
doi: 10.12688/f1000research.11792.2
pubmed: 28928963
Mansour WY, Schumacher S, Rosskopf R, Rhein T, Schmidt-Petersen F, Gatzemeier F, Haag F, Borgmann K, Willers H, Dahm-Daphi J (2008) Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks. Nucleic Acids Res 36:4088–4098. https://doi.org/10.1093/nar/gkn347
doi: 10.1093/nar/gkn347
pubmed: 18539610
pmcid: 2475611
McKinley KL, Cheeseman IM (2016) The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol 17:16–29. https://doi.org/10.1038/nrm.2015.5
doi: 10.1038/nrm.2015.5
pubmed: 26601620
Michael TP (2014) Plant genome size variation: bloating and purging DNA. Brief Funct Genomics 13:308–317. https://doi.org/10.1093/bfgp/elu005
doi: 10.1093/bfgp/elu005
pubmed: 24651721
Ming R, Hou S, Feng Y, Yu Q, Dionne-Laporte A, Saw JH, Senin P, Wang W, Ly BV, Lewis KLT, Salzberg SL, Feng L, Jones MR, Skelton RL, Murray JE, Chen C, Qian W, Shen J, Du P, Eustice M, Tong E, Tang H, Lyons E, Paull RE, Michael TP, Wall K, Rice DW, Albert H, Wang M-L, Zhu YJ, Schatz M, Nagarajan N, Acob RA, Guan P, Blas A, Wai CM, Ackerman CM, Ren Y, Liu C, Wang J, Wang J, Na J-K, Shakirov EV, Haas B, Thimmapuram J, Nelson D, Wang X, Bowers JE, Gschwend AR, Delcher AL, Singh R, Suzuki JY, Tripathi S, Neupane K, Wei H, Irikura B, Paidi M, Jiang N, Zhang W, Presting G, Windsor A, Navajas-Pérez R, Torres MJ, Feltus FA, Porter B, Li Y, Burroughs AM, Luo M-C, Liu L, Christopher DA, Mount SM, Moore PH, Sugimura T, Jiang J, Schuler MA, Friedman V, Mitchell-Olds T, Shippen DE, dePamphilis CW, Palmer JD, Freeling M, Paterson AH, Gonsalves D, Wang L, Alam M (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus) Nature. Nature Publishing Group, pp 991–996
Mizuno N, Toyoshima M, Fujita M, Fukuda S, Kobayashi Y, Ueno M, Tanaka K, Tanaka T, Nishihara E, Mizukoshi H, Yasui Y, Fujita Y (2020) The genotype-dependent phenotypic landscape of quinoa in salt tolerance and key growth traits. DNA Res 27. https://doi.org/10.1093/dnares/dsaa022
Mladenova V, Mladenov E, Chaudhary S, Stuschke M, Iliakis G (2022) The high toxicity of DSB-clusters modelling high-LET-DNA damage derives from inhibition of c-NHEJ and promotion of alt-EJ and SSA despite increases in HR. Front Cell Dev Biol 10:1016951. https://doi.org/10.3389/fcell.2022.1016951
doi: 10.3389/fcell.2022.1016951
pubmed: 36263011
pmcid: 9574094
Morales ME, Derbes RS, Ade CM, Ortego JC, Stark J, Deininger PL, Roy-Engel AM (2016) Heavy metal exposure influences double strand break DNA repair outcomes. PLoS ONE 11:e0151367. https://doi.org/10.1371/journal.pone.0151367
doi: 10.1371/journal.pone.0151367
pubmed: 26966913
pmcid: 4788447
Morales-Ruiz T, Beltran-Melero C, Ortega-Paredes D, Luna-Morillo JA, Martinez-Macias MI, Roldan-Arjona T, Ariza RR, Cordoba-Canero D (2024) The enzymatic properties of Arabidopsis thaliana DNA polymerase lambda suggest a role in base excision repair. Plant Mol Biol 114:3. https://doi.org/10.1007/s11103-023-01407-8
doi: 10.1007/s11103-023-01407-8
pubmed: 38217735
pmcid: 10787897
Nourmohammad A, Lassig M (2011) Formation of regulatory modules by local sequence duplication. PLoS Comput Biol 7:e1002167. https://doi.org/10.1371/journal.pcbi.1002167
doi: 10.1371/journal.pcbi.1002167
pubmed: 21998564
pmcid: 3188502
Orton LM, Fitzek E, Feng X, Grayburn WS, Mower JP, Liu K, Zhang C, Duvall MR, Yin Y (2020) Zygnema Circumcarinatum UTEX 1559 chloroplast and mitochondrial genomes provide insight into land plant evolution. J Exp Bot 71:3361–3373. https://doi.org/10.1093/jxb/eraa149
doi: 10.1093/jxb/eraa149
pubmed: 32206790
Oyama RK, Clauss MJ, Formanová N, Kroymann J, Schmid KJ, Vogel H, Weniger K, Windsor AJ, Mitchell-Olds T (2008) The shrunken genome of Arabidopsis thaliana. Plant Syst Evol 273:257–271. https://doi.org/10.1007/s00606-008-0017-z
doi: 10.1007/s00606-008-0017-z
Pellicer J, Hidalgo O, Dodsworth S, Leitch IJ (2018) Genome Size Diversity and Its Impact on the Evolution of Land Plants Genes, p 88
Penuela M, Finke J, Rocha C (2024) Methylomes as key features for predicting recombination in some plant species. Plant Mol Biol 114:25. https://doi.org/10.1007/s11103-023-01396-8
doi: 10.1007/s11103-023-01396-8
pubmed: 38457042
pmcid: 10924001
Piegu B, Guyot R, Picault N, Roulin A, Sanyal A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice. Genome research. Cold Spring Harbor Laboratory Press, pp 1262–1269
Piontkivska H, Yang MQ, Larkin DM, Lewin HA, Reecy J, Elnitski L (2009) Cross-species mapping of bidirectional promoters enables prediction of unannotated 5’ UTRs and identification of species-specific transcripts. BMC Genomics 10:189. https://doi.org/10.1186/1471-2164-10-189
doi: 10.1186/1471-2164-10-189
pubmed: 19393065
pmcid: 2688522
Pu T-l, Jin J, He L, Qu W-l, Liao C-f, Yuan J-m, Luo H-y, Zhao Q (2023) Population and genetic analysis of Phyllanthus emblica by SNP and InDel markers. J Fruit Sci 40:875–883. https://doi.org/10.13925/j.cnki.gsxb.20220474
doi: 10.13925/j.cnki.gsxb.20220474
Pueyo JJ, Quinones MA, Coba de la Pena T, Fedorova EE, Lucas MM (2021) Nitrogen and Phosphorus Interplay in Lupin Root nodules and Cluster roots. Front Plant Sci 12:644218. https://doi.org/10.3389/fpls.2021.644218
doi: 10.3389/fpls.2021.644218
pubmed: 33747024
pmcid: 7966414
Pustahija F, Brown SC, Bogunić F, Bašić N, Muratović E, Ollier S, Hidalgo O, Bourge M, Stevanović V, Siljak-Yakovlev S (2013) Small genomes dominate in plants growing on serpentine soils in West Balkans, an exhaustive study of 8 habitats covering 308 taxa. Plant Soil 373:427–453. https://doi.org/10.1007/s11104-013-1794-x
doi: 10.1007/s11104-013-1794-x
Rache L, Blondin L, Diaz Tatis P, Flores C, Camargo A, Kante M, Wonni I, Lopez C, Szurek B, Dupas S, Pruvost O, Koebnik R, Restrepo S, Bernal A, Verniere C (2023) A minisatellite-based MLVA for deciphering the global epidemiology of the bacterial cassava pathogen Xanthomonas phaseoli Pv. Manihotis. PLoS ONE 18:e0285491. https://doi.org/10.1371/journal.pone.0285491
doi: 10.1371/journal.pone.0285491
pubmed: 37167330
pmcid: 10174486
Reese JB, Williams JH (2019) How does genome size affect the evolution of pollen tube growth rate, a haploid performance trait? Am J Bot 106:1011–1020. https://doi.org/10.1002/ajb2.1326
doi: 10.1002/ajb2.1326
pubmed: 31294836
Ren L, Huang W, Cannon EKS, Bertioli DJ, Cannon SB (2018) A mechanism for genome size reduction following genomic rearrangements. Front Genet 9:454. https://doi.org/10.3389/fgene.2018.00454
doi: 10.3389/fgene.2018.00454
pubmed: 30356760
pmcid: 6189423
Roth N, Klimesch J, Dukowic-Schulze S, Pacher M, Mannuss A, Puchta H (2012) The requirement for recombination factors differs considerably between different pathways of homologous double-strand break repair in somatic plant cells. Plant J 72(5):781–790. https://doi.org/10.1111/j.1365-313X.2012.05119.x
Rudall PJ, Rice CL (2019) Epidermal patterning and stomatal development in Gnetales. Ann Bot 124:149–164. https://doi.org/10.1093/aob/mcz053
doi: 10.1093/aob/mcz053
pubmed: 31045221
pmcid: 6676381
Sato MP, Iwakami S, Fukunishi K, Sugiura K, Yasuda K, Isobe S, Shirasawa K (2023) Telomere-to-telomere genome assembly of an allotetraploid pernicious weed, Echinochloa phyllopogon. DNA Res 30. https://doi.org/10.1093/dnares/dsad023
Simonin KA, Roddy AB (2018) Genome downsizing, physiological novelty, and the global dominance of flowering plants. In: Tanentzap A (ed) PLOS Biology. Public Library of Science, p e2003706
Skene K (2000) Pattern formation in Cluster roots: some Developmental and Evolutionary considerations. Ann Botany 85:901–908. https://doi.org/10.1006/anbo.2000.1140
doi: 10.1006/anbo.2000.1140
Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J (2013) Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytologist, pp 911–921 https://doi.org/10.1111/nph.12399
Stetter MG, Schmid K, Ludewig U (2015) Uncovering genes and ploidy involved in the high diversity in root hair density, length and response to local scarce phosphate in Arabidopsis thaliana. PLoS ONE 10:e0120604. https://doi.org/10.1371/journal.pone.0120604
doi: 10.1371/journal.pone.0120604
pubmed: 25781967
pmcid: 4364354
Sureshkumar S, Todesco M, Schneeberger K, Harilal R, Balasubramanian S, Weigel D (2009) A genetic defect caused by a triplet repeat expansion in Arabidopsis thaliana. Science, New York, NY). American Association for the Advancement of Science, pp 1060–1063
Takeda T, Shirai K, Kim YW, Higuchi-Takeuchi M, Shimizu M, Kondo T, Ushijima T, Matsushita T, Shinozaki K, Hanada K (2023) A de novo gene originating from the mitochondria controls floral transition in Arabidopsis thaliana. Plant Mol Biol 111:189–203. https://doi.org/10.1007/s11103-022-01320-6
doi: 10.1007/s11103-022-01320-6
pubmed: 36306001
The Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, pp 796–815
Varshney RK, Mir RR, Bhatia S, Thudi M, Hu Y, Azam S, Zhang Y, Jaganathan D, You FM, Gao J, Riera-Lizarazu O, Luo MC (2014) Integrated physical, genetic and genome map of chickpea (Cicer arietinum L). Funct Integr Genomics 14:59–73. https://doi.org/10.1007/s10142-014-0363-6
doi: 10.1007/s10142-014-0363-6
pubmed: 24610029
pmcid: 4273598
Veleba A, Zedek F, Horova L, Vesely P, Srba M, Smarda P, Bures P (2020) Is the evolution of carnivory connected with genome size reduction? Am J Bot 107:1253–1259. https://doi.org/10.1002/ajb2.1526
doi: 10.1002/ajb2.1526
pubmed: 32882073
Vesely P, Smarda P, Bures P, Stirton C, Muasya AM, Mucina L, Horova L, Vesela K, Silerova A, Smerda J, Knapek O (2020) Environmental pressures on stomatal size may drive plant genome size evolution: evidence from a natural experiment with Cape geophytes. Ann Bot 126:323–330. https://doi.org/10.1093/aob/mcaa095
doi: 10.1093/aob/mcaa095
pubmed: 32474609
pmcid: 7380457
Vinogradov AE (2003) Selfish DNA is maladaptive: evidence from the plant Red List. Trends Genet 19:609–614. https://doi.org/10.1016/j.tig.2003.09.010
doi: 10.1016/j.tig.2003.09.010
pubmed: 14585612
Vishwakarma MK, Kale SM, Sriswathi M, Naresh T, Shasidhar Y, Garg V, Pandey MK, Varshney RK (2017) Genome-wide Discovery and Deployment of insertions and deletions markers provided Greater insights on species, genomes, and sections relationships in the Genus Arachis. Front Plant Sci 8:2064. https://doi.org/10.3389/fpls.2017.02064
doi: 10.3389/fpls.2017.02064
pubmed: 29312366
pmcid: 5742254
Vu GTH, Schmutzer T, Bull F, Cao HX, Fuchs J, Tran TD, Jovtchev G, Pistrick K, Stein N, Pecinka A, Neumann P, Novak P, Macas J, Dear PH, Blattner FR, Scholz U, Schubert I (2015) Comparative genome analysis reveals divergent genome size evolution in a Carnivorous Plant Genus the Plant Genome. Crop Science Society of America, p 0
Vu GTH, Cao HX, Reiss B, Schubert I (2017) Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage. New Phytol 214(4):1712–1721. https://doi.org/10.1111/nph.14490
Vymazal J (2016) Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ 544:495–498. https://doi.org/10.1016/j.scitotenv.2015.12.011
doi: 10.1016/j.scitotenv.2015.12.011
pubmed: 26673940
Wan T, Liu Z, Leitch IJ, Xin H, Maggs-Kolling G, Gong Y, Li Z, Marais E, Liao Y, Dai C, Liu F, Wu Q, Song C, Zhou Y, Huang W, Jiang K, Wang Q, Yang Y, Zhong Z, Yang M, Yan X, Hu G, Hou C, Su Y, Feng S, Yang J, Yan J, Chu J, Chen F, Ran J, Wang X, Van de Peer Y, Leitch AR, Wang Q (2021) The Welwitschia genome reveals a unique biology underpinning extreme longevity in deserts. Nat Commun 12:4247. https://doi.org/10.1038/s41467-021-24528-4
doi: 10.1038/s41467-021-24528-4
pubmed: 34253727
pmcid: 8275611
Wang H, Liu JS (2008) LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genomics 9:382. https://doi.org/10.1186/1471-2164-9-382
doi: 10.1186/1471-2164-9-382
pubmed: 18691433
pmcid: 2533021
Wang X, Morton JA, Pellicer J, Leitch IJ, Leitch AR (2021) Genome downsizing after polyploidy: mechanisms, rates and selection pressures. Plant J 107:1003–1015. https://doi.org/10.1111/tpj.15363
doi: 10.1111/tpj.15363
pubmed: 34077584
Wessler S, Tarpley A, Purugganan M, Spell M, Okagaki R (1990) Filler DNA is associated with spontaneous deletions in maize. Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences,Communicated by Barbara McClintock,pp 8731–8735 https://doi.org/10.1073/pnas.87.22.8731
West CE, Waterworth WM, Sunderland PA, Bray CM (2004) Arabidopsis DNA double-strand break repair pathways. Biochem Soc Trans 32:964–966. https://doi.org/10.1042/BST0320964
doi: 10.1042/BST0320964
pubmed: 15506937
Willhoeft U, Buss H, Tannich E (2002) The abundant polyadenylated transcript 2 DNA sequence of the pathogenic protozoan parasite Entamoeba histolytica represents a nonautonomous non-long-terminal-repeat retrotransposon-like element which is absent in the closely related nonpathogenic species infection and immunity. American Society for Microbiology, pp 6798–6804
Wing SL, Boucher LD (1998) Ecological aspects of the cretaceous Flowering Plant Radiation. Annu Rev Earth Planet Sci 26:379–421. https://doi.org/10.1146/annurev.earth.26.1.379
doi: 10.1146/annurev.earth.26.1.379
Wlodzimierz P, Rabanal FA, Burns R, Naish M, Primetis E, Scott A, Mandakova T, Gorringe N, Tock AJ, Holland D, Fritschi K, Habring A, Lanz C, Patel C, Schlegel T, Collenberg M, Mielke M, Nordborg M, Roux F, Shirsekar G, Alonso-Blanco C, Lysak MA, Novikova PY, Bousios A, Weigel D, Henderson IR (2023) Cycles of satellite and transposon evolution in Arabidopsis centromeres. Nature 618:557–565. https://doi.org/10.1038/s41586-023-06062-z
doi: 10.1038/s41586-023-06062-z
pubmed: 37198485
Wu H, Yu Q, Ran JH, Wang XQ (2021) Unbiased subgenome evolution in Allotetraploid Species of Ephedra and its implications for the evolution of large genomes in Gymnosperms. Genome Biol Evol 13. https://doi.org/10.1093/gbe/evaa236
Xu S, Li XQ, Guo H, Wu XY, Wang N, Liu ZQ, Hao HQ, Jing HC (2023) Mucilage secretion by aerial roots in sorghum (Sorghum bicolor): sugar profile, genetic diversity, GWAS and transcriptomic analysis. Plant Mol Biol 112:309–323. https://doi.org/10.1007/s11103-023-01365-1
doi: 10.1007/s11103-023-01365-1
pubmed: 37378835
Yu JG, Tang JY, Wei R, Lan MF, Xiang RC, Zhang XC, Xiang QP (2023) The first homosporous lycophyte genome revealed the association between the recent dynamic accumulation of LTR-RTs and genome size variation. Plant Mol Biol 112:325–340. https://doi.org/10.1007/s11103-023-01366-0
doi: 10.1007/s11103-023-01366-0
pubmed: 37380791
Zhang H, Dawe RK (2012) Total centromere size and genome size are strongly correlated in ten grass species. Chromosome Res 20:403–412. https://doi.org/10.1007/s10577-012-9284-1
Zhou R, Jenkins JW, Zeng Y, Shu S, Jang H, Harding SA, Williams M, Plott C, Barry KW, Koriabine M, Amirebrahimi M, Talag J, Rajasekar S, Grimwood J, Schmitz RJ, Dawe RK, Schmutz J, Tsai CJ (2023) Haplotype-resolved genome assembly of Populus tremula x P. Alba reveals aspen-specific megabase satellite DNA. Plant J 116:1003–1017. https://doi.org/10.1111/tpj.16454
doi: 10.1111/tpj.16454
pubmed: 37675609