Synergistic effects of curcumin and stem cells on spinal cord injury: a comprehensive review.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 30 07 2024
accepted: 24 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Spinal cord injury (SCI) is damage to the spinal cord that permanently or temporarily disrupts its function, causing considerable autonomic, sensory, and motor disorders, and involves between 10 and 83 cases per million yearly. Traumatic SCI happens following primary acute mechanical damage, leading to injury to the spinal cord tissue and worsening clinical outcomes. The present therapeutic strategies for this complex disease fundamentally rely on surgical approaches and conservative remedies. However, these modalities are not effective enough for neurological recovery. Therefore, it is necessary to discover more efficient methods to treat patients with SCI. Today, considerable attention has been drawn to bioactive compounds-based remedies and stem cell therapy for curing various ailments and disorders, such as neurological diseases. Some researchers have recommended that harnessing curcumin, a polyphenol obtained from turmeric, in combination with stem cells, like mesenchymal stem cells, neural stem cells, and ependymal stem cells, can remarkably improve neurological recovery-related parameters more effective than the treatment with these two methods separately in experimental models. Hereby, this literature review delves into the functionality of curcumin combined with stem cells in treating SCI with a focus on cellular and molecular mechanisms.

Identifiants

pubmed: 39485550
doi: 10.1007/s11033-024-10057-y
pii: 10.1007/s11033-024-10057-y
doi:

Substances chimiques

Curcumin IT942ZTH98

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

1113

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Nature B.V.

Références

Anjum A, Yazid MD, Fauzi Daud M, Idris J, Ng AMH, Selvi Naicker A et al (2020) Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci. ;21(20)
Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings MG (2014) Global prevalence and incidence of traumatic spinal cord injury. Clin Epidemiol. 6:309–331
Fehlings MG, Pedro K, Hejrati N (2022) Management of acute spinal cord injury: Where have we been? Where are we now? Where are we going?: Mary Ann Liebert, Inc., publishers 140 Huguenot Street, 3rd Floor New … pp. 1591–1602
New PW, Biering-Sørensen F (2017) Review of the History of Non-traumatic Spinal Cord Dysfunction. Top Spinal Cord Inj Rehabil 23(4):285–298
pubmed: 29339905 pmcid: 5667426 doi: 10.1310/sci2304-285
Zhang C, Talifu Z, Xu X, Liu W, Ke H, Pan Y et al (2023) MicroRNAs in spinal cord injury: A narrative review. Front Mol Neurosci 16:1099256
pubmed: 36818651 pmcid: 9931912 doi: 10.3389/fnmol.2023.1099256
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic Spinal Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms. Front Neurol 10:282
pubmed: 30967837 pmcid: 6439316 doi: 10.3389/fneur.2019.00282
Wulf MJ, Tom VJ (2023) Consequences of spinal cord injury on the sympathetic nervous system. Front Cell Neurosci 17:999253
pubmed: 36925966 pmcid: 10011113 doi: 10.3389/fncel.2023.999253
Dimitrijevic MR, Danner SM, Mayr W (2015) Neurocontrol of Movement in Humans With Spinal Cord Injury. Artif Organs 39(10):823–833
pubmed: 26471132 doi: 10.1111/aor.12614
Turtle JD, Henwood MK, Strain MM, Huang YJ, Miranda RC, Grau JW (2019) Engaging pain fibers after a spinal cord injury fosters hemorrhage and expands the area of secondary injury. Exp Neurol 311:115–124
pubmed: 30268767 doi: 10.1016/j.expneurol.2018.09.018
Shinozaki M, Nagoshi N, Nakamura M, Okano H (2021) Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells. ;10(10)
Angeli CA, Boakye M, Morton RA, Vogt J, Benton K, Chen Y et al (2018) Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N Engl J Med 379(13):1244–1250
pubmed: 30247091 doi: 10.1056/NEJMoa1803588
Requejo-Aguilar R, Alastrue-Agudo A, Cases-Villar M, Lopez-Mocholi E, England R, Vicent MJ et al (2017) Combined polymer-curcumin conjugate and ependymal progenitor/stem cell treatment enhances spinal cord injury functional recovery. Biomaterials 113:18–30
pubmed: 27810639 doi: 10.1016/j.biomaterials.2016.10.032
Ide H, Lu Y, Noguchi T, Muto S, Okada H, Kawato S et al (2018) Modulation of AKR1C2 by curcumin decreases testosterone production in prostate cancer. Cancer Sci 109(4):1230–1238
pubmed: 29369461 pmcid: 5891173 doi: 10.1111/cas.13517
Kronski E, Fiori ME, Barbieri O, Astigiano S, Mirisola V, Killian PH et al (2014) miR181b is induced by the chemopreventive polyphenol curcumin and inhibits breast cancer metastasis via down-regulation of the inflammatory cytokines CXCL1 and – 2. Mol Oncol 8(3):581–595
pubmed: 24484937 pmcid: 5528633 doi: 10.1016/j.molonc.2014.01.005
Fu H, Wang C, Yang D, Wei Z, Xu J, Hu Z et al (2018) Curcumin regulates proliferation, autophagy, and apoptosis in gastric cancer cells by affecting PI3K and P53 signaling. J Cell Physiol 233(6):4634–4642
pubmed: 28926094 doi: 10.1002/jcp.26190
Sahin K, Orhan C, Tuzcu M, Sahin N, Tastan H, Özercan İH et al (2018) Chemopreventive and Antitumor Efficacy of Curcumin in a Spontaneously Developing Hen Ovarian Cancer Model. Cancer Prev Res (Phila) 11(1):59–67
pubmed: 29089332 doi: 10.1158/1940-6207.CAPR-16-0289
Yang J, Miao X, Yang FJ, Cao JF, Liu X, Fu JL et al (2021) Therapeutic potential of curcumin in diabetic retinopathy (Review). Int J Mol Med. ;47(5)
Yuan J, Liu W, Zhu H, Chen Y, Zhang X, Li L et al (2017) Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo. Brain Res 1655:90–103
pubmed: 27865778 doi: 10.1016/j.brainres.2016.11.002
Yao M, Yang L, Wang J, Sun YL, Dun RL, Wang YJ et al (2015) Neurological recovery and antioxidant effects of curcumin for spinal cord injury in the rat: a network meta-analysis and systematic review. J Neurotrauma 32(6):381–391
pubmed: 25141070 doi: 10.1089/neu.2014.3520
Li W, Yao S, Li H, Meng Z, Sun X (2021) Curcumin promotes functional recovery and inhibits neuronal apoptosis after spinal cord injury through the modulation of autophagy. J Spinal Cord Med 44(1):37–45
pubmed: 31162984 doi: 10.1080/10790268.2019.1616147
Sanivarapu R, Vallabhaneni V, Verma V (2016) The Potential of Curcumin in Treatment of Spinal Cord Injury. Neurol Res Int 2016:9468193
pubmed: 27298735 pmcid: 4889828 doi: 10.1155/2016/9468193
Luo J, Shi X, Li L, Tan Z, Feng F, Li J et al (2021) An injectable and self-healing hydrogel with controlled release of curcumin to repair spinal cord injury. Bioact Mater 6(12):4816–4829
pubmed: 34136725 pmcid: 8175285
Meybodi SM, Rezaei P, Faraji N, Jamehbozorg K, Ashna S, Shokri F et al (2023) Curcumin and its novel formulations for the treatment of hepatocellular carcinoma: new trends and future perspectives in cancer therapy. J Funct Foods 108:105705
doi: 10.1016/j.jff.2023.105705
Rezaei-Tazangi F, Roghani-Shahraki H, Khorsand Ghaffari M, Abolhasani Zadeh F, Boostan A, ArefNezhad R et al (2021) The therapeutic potential of common herbal and nano-based herbal formulations against ovarian cancer: New insight into the current evidence. Pharmaceuticals 14(12):1315
pubmed: 34959716 pmcid: 8705681 doi: 10.3390/ph14121315
Moghaddam NSA, Oskouie MN, Butler AE, Petit PX, Barreto GE, Sahebkar A (2019) Hormetic effects of curcumin: What is the evidence? J Cell Physiol 234(7):10060–10071
pubmed: 30515809 doi: 10.1002/jcp.27880
Rainey N, Motte L, Aggarwal BB, Petit P (2015) Curcumin hormesis mediates a cross-talk between autophagy and cell death. Cell Death Dis 6(12):e2003
pubmed: 26633709 pmcid: 4720879 doi: 10.1038/cddis.2015.343
Huang L, Fu C, Xiong F, He C, Wei Q (2021) Stem Cell Therapy for Spinal Cord Injury. Cell Transpl 30:963689721989266
doi: 10.1177/0963689721989266
Nandoe Tewarie RS, Hurtado A, Bartels RH, Grotenhuis A, Oudega M (2009) Stem cell-based therapies for spinal cord injury. J Spinal Cord Med 32(2):105–114
pubmed: 19569457 doi: 10.1080/10790268.2009.11760761
Rezaei-Tazangi F, Alidadi H, Samimi A, Karimi S, Kahorsandi L (2020) Effects of Wharton’s jelly mesenchymal stem cells-derived secretome on colon carcinoma HT-29 cells. Tissue Cell 67:101413
pubmed: 32835945 doi: 10.1016/j.tice.2020.101413
Bahmanpour S, Khozani TT, Tazangi FR (2019) Evaluation of the capability of the Wharton’s jelly mesenchymal stem cell aggregates to express the markers of three germ cell lineages. Arch Iran Med 22(2):85–90
pubmed: 30980644
Stenudd M, Sabelström H, Frisén J (2015) Role of endogenous neural stem cells in spinal cord injury and repair. JAMA Neurol 72(2):235–237
pubmed: 25531583 doi: 10.1001/jamaneurol.2014.2927
Yuan J, Zou M, Xiang X, Zhu H, Chu W, Liu W et al (2015) Curcumin improves neural function after spinal cord injury by the joint inhibition of the intracellular and extracellular components of glial scar. J Surg Res 195(1):235–245
pubmed: 25661742 doi: 10.1016/j.jss.2014.12.055
Ormond DR, Shannon C, Oppenheim J, Zeman R, Das K, Murali R et al (2014) Stem cell therapy and curcumin synergistically enhance recovery from spinal cord injury. PLoS ONE 9(2):e88916
pubmed: 24558450 pmcid: 3928327 doi: 10.1371/journal.pone.0088916
Lestari ML, Indrayanto G, Curcumin (2014) Profiles Drug Subst Excip Relat Methodol 39:113–204
pubmed: 24794906 doi: 10.1016/B978-0-12-800173-8.00003-9
Ammon HP, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57(1):1–7
pubmed: 2062949 doi: 10.1055/s-2006-960004
Peng Y, Ao M, Dong B, Jiang Y, Yu L, Chen Z et al (2021) Anti-Inflammatory Effects of Curcumin in the Inflammatory Diseases: Status, Limitations and Countermeasures. Drug Des Devel Ther 15:4503–4525
pubmed: 34754179 pmcid: 8572027 doi: 10.2147/DDDT.S327378
Ferguson JJA, Abbott KA, Garg ML (2021) Anti-inflammatory effects of oral supplementation with curcumin: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev 79(9):1043–1066
pubmed: 34378053 doi: 10.1093/nutrit/nuaa114
Hedayati-Moghadam M, Hosseinian S, Paseban M, Shabgah AG, Gholizadeh J, Jamialahmadi T et al (2021) The Role of Chemokines in Cardiovascular Diseases and the Therapeutic Effect of Curcumin on CXCL8 and CCL2 as Pathological Chemokines in Atherosclerosis. Adv Exp Med Biol 1328:155–170
pubmed: 34981477 doi: 10.1007/978-3-030-73234-9_11
Lee SY, Cho SS, Li Y, Bae CS, Park KM, Park DH (2020) Anti-inflammatory Effect of Curcuma longa and Allium hookeri Co-treatment via NF-κB and COX-2 Pathways. Sci Rep 10(1):5718
pubmed: 32235914 pmcid: 7109078 doi: 10.1038/s41598-020-62749-7
Zhang J, Zheng Y, Luo Y, Du Y, Zhang X, Fu J (2019) Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/ TLR4/ NF-κB pathways in BV2 cells. Mol Immunol 116:29–37
pubmed: 31590042 doi: 10.1016/j.molimm.2019.09.020
Wu T, Li X, Tu S, Tan W, Chen L (2022) Curcumin protect Schwann cells from inflammation response and apoptosis induced by high glucose through the NF-κB pathway. Tissue Cell 77:101873
pubmed: 35868051 doi: 10.1016/j.tice.2022.101873
Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR (2021) The Nuclear Factor Kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis 8(3):287–297
pubmed: 33997176 doi: 10.1016/j.gendis.2020.06.005
Wang Y, Tang Q, Duan P, Yang L (2018) Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis. Immunopharmacol Immunotoxicol 40(6):476–482
pubmed: 30111198 doi: 10.1080/08923973.2018.1469145
Deng XZ, Geng SS, Luo M, Chai JJ, Xu Y, Chen CL et al (2020) Curcumin potentiates laryngeal squamous carcinoma radiosensitivity via NF-ΚB inhibition by suppressing IKKγ expression. J Recept Signal Transduct Res 40(6):541–549
pubmed: 32515250 doi: 10.1080/10799893.2020.1767649
Nguyen HD, Jo WH, Hoang NHM, Kim MS, Curcumin-Attenuated (2022) TREM-1/DAP12/NLRP3/Caspase-1/IL1B, TLR4/NF-κB Pathways, and Tau Hyperphosphorylation Induced by 1,2-Diacetyl Benzene: An in Vitro and in Silico Study. Neurotox Res 40(5):1272–1291
pubmed: 35781221 doi: 10.1007/s12640-022-00535-1
Yen FL, Tsai MH, Yang CM, Liang CJ, Lin CC, Chiang YC et al (2013) Curcumin nanoparticles ameliorate ICAM-1 expression in TNF-α-treated lung epithelial cells through p47 (phox) and MAPKs/AP-1 pathways. PLoS ONE 8(5):e63845
pubmed: 23671702 pmcid: 3650060 doi: 10.1371/journal.pone.0063845
Ho LJ, Lin LC, Hung LF, Wang SJ, Lee CH, Chang DM et al (2005) Retinoic acid blocks pro-inflammatory cytokine-induced matrix metalloproteinase production by down-regulating JNK-AP-1 signaling in human chondrocytes. Biochem Pharmacol 70(2):200–208
pubmed: 15946654 doi: 10.1016/j.bcp.2005.04.039
Qiao Y, He H, Jonsson P, Sinha I, Zhao C, Dahlman-Wright K (2016) AP-1 Is a Key Regulator of Proinflammatory Cytokine TNFα-mediated Triple-negative Breast Cancer Progression. J Biol Chem 291(10):5068–5079
pubmed: 26792858 pmcid: 4777842 doi: 10.1074/jbc.M115.702571
Woo JH, Park JM, Jang JH, Yang H, Surh YJ, Na HK (2020) Curcumin induces expression of 15-hydroxyprostaglandin dehydrogenase in gastric mucosal cells and mouse stomach in vivo: AP-1 as a potential target. J Nutr Biochem 85:108469
pubmed: 32735936 doi: 10.1016/j.jnutbio.2020.108469
Joshi P, Joshi S, Semwal DK, Verma K, Dwivedi J, Sharma S (2022) Role of curcumin in ameliorating hypertension and associated conditions: a mechanistic insight. Mol Cell Biochem 477(10):2359–2385
pubmed: 35569080 doi: 10.1007/s11010-022-04447-8
Nathan C, Cunningham-Bussel A (2013) Beyond oxidative stress: an immunologist’s guide to reactive oxygen species. Nat Rev Immunol 13(5):349–361
pubmed: 23618831 pmcid: 4250048 doi: 10.1038/nri3423
Forni C, Facchiano F, Bartoli M, Pieretti S, Facchiano A, D’Arcangelo D et al (2019) Beneficial Role of Phytochemicals on Oxidative Stress and Age-Related Diseases. Biomed Res Int 2019:8748253
pubmed: 31080832 pmcid: 6475554 doi: 10.1155/2019/8748253
Arfin S, Jha NK, Jha SK, Kesari KK, Ruokolainen J, Roychoudhury S et al (2021) Oxidative Stress in Cancer Cell Metabolism. Antioxid (Basel). ;10(5)
Bolduc JA, Collins JA, Loeser RF (2019) Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 132:73–82
pubmed: 30176344 doi: 10.1016/j.freeradbiomed.2018.08.038
Juan CA, de la Pérez JM, Plou FJ, Pérez-Lebeña E (2021) The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int J Mol Sci. ;22(9)
Kundur S, Prayag A, Selvakumar P, Nguyen H, McKee L, Cruz C et al (2019) Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines. J Cell Physiol 234(7):11103–11118
pubmed: 30478904 doi: 10.1002/jcp.27761
Alikiaii B, Bagherniya M, Askari G, Sathyapalan T, Sahebkar A (2021) Evaluation of the effect of curcumin on pneumonia: A systematic review of preclinical studies. Phytother Res 35(4):1939–1952
pubmed: 33155336 doi: 10.1002/ptr.6939
Pricci M, Girardi B, Giorgio F, Losurdo G, Ierardi E, Di Leo A (2020) Curcumin and Colorectal Cancer: From Basic to Clinical Evidences. Int J Mol Sci. ;21(7)
Ashrafizadeh M, Ahmadi Z, Mohammadinejad R, Farkhondeh T, Samarghandian S (2020) Curcumin Activates the Nrf2 Pathway and Induces Cellular Protection Against Oxidative Injury. Curr Mol Med 20(2):116–133
pubmed: 31622191
Zuo C, Cao H, Song Y, Gu Z, Huang Y, Yang Y et al (2022) Nrf2: An all-rounder in depression. Redox Biol 58:102522
pubmed: 36335763 pmcid: 9641011 doi: 10.1016/j.redox.2022.102522
Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y et al (2009) The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol Cell Biol 29(2):493–502
pubmed: 19001094 doi: 10.1128/MCB.01080-08
Shin JW, Chun KS, Kim DH, Kim SJ, Kim SH, Cho NC et al (2020) Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem Pharmacol 173:113820
pubmed: 31972171 doi: 10.1016/j.bcp.2020.113820
Kumar A, Mittal R (2017) Nrf2: a potential therapeutic target for diabetic neuropathy. Inflammopharmacology 25(4):393–402
pubmed: 28353124 doi: 10.1007/s10787-017-0339-y
Nioi P, McMahon M, Itoh K, Yamamoto M, Hayes JD (2003) Identification of a novel Nrf2-regulated antioxidant response element (ARE) in the mouse NAD(P)H:quinone oxidoreductase 1 gene: reassessment of the ARE consensus sequence. Biochem J 374(Pt 2):337–348
pubmed: 12816537 pmcid: 1223621 doi: 10.1042/bj20030754
Mine Y, Young D, Yang C (2015) Antioxidative stress effect of phosphoserine dimers is mediated via activation of the Nrf2 signaling pathway. Mol Nutr Food Res 59(2):303–314
pubmed: 25351664 doi: 10.1002/mnfr.201400381
Ryoo IG, Shin DH, Kang KS, Kwak MK (2015) Involvement of Nrf2-GSH signaling in TGFβ1-stimulated epithelial-to-mesenchymal transition changes in rat renal tubular cells. Arch Pharm Res 38(2):272–281
pubmed: 24849033 doi: 10.1007/s12272-014-0380-y
Meshkibaf MH, Maleknia M, Noroozi S (2019) Effect of curcumin on gene expression and protein level of methionine sulfoxide reductase A (MSRA), SOD, CAT and GPx in Freund’s adjuvant inflammation-induced male rats. J Inflamm Res 12:241–249
pubmed: 31564949 pmcid: 6732743 doi: 10.2147/JIR.S212577
Wang X, Chang X, Zhan H, Zhang Q, Li C, Gao Q et al (2020) Curcumin and Baicalin ameliorate ethanol-induced liver oxidative damage via the Nrf2/HO-1 pathway. J Food Biochem 44(10) :e13425
Cao S, Wang C, Yan J, Li X, Wen J, Hu C (2020) Curcumin ameliorates oxidative stress-induced intestinal barrier injury and mitochondrial damage by promoting Parkin dependent mitophagy through AMPK-TFEB signal pathway. Free Radic Biol Med 147:8–22
pubmed: 31816386 doi: 10.1016/j.freeradbiomed.2019.12.004
Zhou F, Wang M, Ju J, Wang Y, Liu Z, Zhao X et al (2019) Schizandrin A protects against cerebral ischemia-reperfusion injury by suppressing inflammation and oxidative stress and regulating the AMPK/Nrf2 pathway regulation. Am J Transl Res 11(1):199–209
pubmed: 30787979 pmcid: 6357305
Joo MS, Kim WD, Lee KY, Kim JH, Koo JH, Kim SG (2016) AMPK Facilitates Nuclear Accumulation of Nrf2 by Phosphorylating at Serine 550. Mol Cell Biol 36(14):1931–1942
pubmed: 27161318 pmcid: 4936058 doi: 10.1128/MCB.00118-16
Matzinger M, Fischhuber K, Pölöske D, Mechtler K, Heiss EH (2020) AMPK leads to phosphorylation of the transcription factor Nrf2, tuning transactivation of selected target genes. Redox Biol 29:101393
pubmed: 31805502 doi: 10.1016/j.redox.2019.101393
Pu Y, Zhang H, Wang P, Zhao Y, Li Q, Wei X et al (2013) Dietary curcumin ameliorates aging-related cerebrovascular dysfunction through the AMPK/uncoupling protein 2 pathway. Cell Physiol Biochem 32(5):1167–1177
pubmed: 24335167 doi: 10.1159/000354516
Meier P, Finch A, Evan G (2000) Apoptosis in development. Nature 407(6805):796–801
pubmed: 11048731 doi: 10.1038/35037734
Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep. ;39(1)
Alvarez-Diaz S, Dillon CP, Lalaoui N, Tanzer MC, Rodriguez DA, Lin A et al (2016) The Pseudokinase MLKL and the Kinase RIPK3 Have Distinct Roles in Autoimmune Disease Caused by Loss of Death-Receptor-Induced Apoptosis. Immunity 45(3):513–526
pubmed: 27523270 pmcid: 5040700 doi: 10.1016/j.immuni.2016.07.016
Erekat NS (2022) Apoptosis and its therapeutic implications in neurodegenerative diseases. Clin Anat 35(1):65–78
pubmed: 34558138 doi: 10.1002/ca.23792
Patel SS, Acharya A, Ray RS, Agrawal R, Raghuwanshi R, Jain P (2020) Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit Rev Food Sci Nutr 60(6):887–939
pubmed: 30632782 doi: 10.1080/10408398.2018.1552244
Xu G, Shi Y (2007) Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res 17(9):759–771
pubmed: 17576411 doi: 10.1038/cr.2007.52
Schneider P, Tschopp J (2000) Apoptosis induced by death receptors. Pharm Acta Helv 74(2–3):281–286
pubmed: 10812970 doi: 10.1016/S0031-6865(99)00038-2
Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977–2992
pubmed: 27646922 doi: 10.1016/j.bbamcr.2016.09.012
Liu F, Gao S, Yang Y, Zhao X, Fan Y, Ma W et al (2018) Antitumor activity of curcumin by modulation of apoptosis and autophagy in human lung cancer A549 cells through inhibiting PI3K/Akt/mTOR pathway. Oncol Rep 39(3):1523–1531
pubmed: 29328421
Hamzehzadeh L, Atkin SL, Majeed M, Butler AE, Sahebkar A (2018) The versatile role of curcumin in cancer prevention and treatment: A focus on PI3K/AKT pathway. J Cell Physiol 233(10):6530–6537
pubmed: 29693253 doi: 10.1002/jcp.26620
Liu R, Chen Y, Liu G, Li C, Song Y, Cao Z et al (2020) PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell Death Dis 11(9):797
pubmed: 32973135 pmcid: 7515865 doi: 10.1038/s41419-020-02998-6
Chang M, Wu M, Li H (2017) Curcumin combined with glycyrrhetinic acid inhibits the development of hepatocellular carcinoma cells by down-regulating the PTEN/PI3K/AKT signalling pathway. Am J Transl Res 9(12):5567–5575
pubmed: 29312508 pmcid: 5752906
Chiu YJ, Yang JS, Tsai FJ, Chiu HY, Juan YN, Lo YH et al (2022) Curcumin suppresses cell proliferation and triggers apoptosis in vemurafenib-resistant melanoma cells by downregulating the EGFR signaling pathway. Environ Toxicol 37(4):868–879
pubmed: 34994998 doi: 10.1002/tox.23450
Hu X, Li J, Fu M, Zhao X, Wang W (2021) The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 6(1):402
pubmed: 34824210 pmcid: 8617206 doi: 10.1038/s41392-021-00791-1
Petiti J, Rosso V, Lo Iacono M, Panuzzo C, Calabrese C, Signorino E et al (2019) Curcumin induces apoptosis in JAK2-mutated cells by the inhibition of JAK2/STAT and mTORC1 pathways. J Cell Mol Med 23(6):4349–4357
pubmed: 31033209 pmcid: 6533565 doi: 10.1111/jcmm.14326
Lee HP, Li TM, Tsao JY, Fong YC, Tang CH (2012) Curcumin induces cell apoptosis in human chondrosarcoma through extrinsic death receptor pathway. Int Immunopharmacol 13(2):163–169
pubmed: 22522053 doi: 10.1016/j.intimp.2012.04.002
Park MY, Ha SE, Vetrivel P, Kim HH, Bhosale PB, Abusaliya A et al (2021) Differences of Key Proteins between Apoptosis and Necroptosis. Biomed Res Int 2021:3420168
pubmed: 34934768 pmcid: 8684821 doi: 10.1155/2021/3420168
Ramachandran C, Rodriguez S, Ramachandran R, Raveendran Nair PK, Fonseca H, Khatib Z et al (2005) Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 25(5):3293–3302
pubmed: 16101141
Shakeri A, Zirak MR, Wallace Hayes A, Reiter R, Karimi G (2019) Curcumin and its analogues protect from endoplasmic reticulum stress: Mechanisms and pathways. Pharmacol Res 146:104335
pubmed: 31265891 doi: 10.1016/j.phrs.2019.104335
Zeng Y, Du Q, Zhang Z, Ma J, Han L, Wang Y et al (2020) Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Arch Biochem Biophys 694:108613
pubmed: 33010228 doi: 10.1016/j.abb.2020.108613
Ren BC, Zhang YF, Liu SS, Cheng XJ, Yang X, Cui XG et al (2020) Curcumin alleviates oxidative stress and inhibits apoptosis in diabetic cardiomyopathy via Sirt1-Foxo1 and PI3K-Akt signalling pathways. J Cell Mol Med 24(21):12355–12367
pubmed: 32961025 pmcid: 7687015 doi: 10.1111/jcmm.15725
Zhu H, Wang X, Wang X, Liu B, Yuan Y, Zuo X (2020) Curcumin attenuates inflammation and cell apoptosis through regulating NF-κB and JAK2/STAT3 signaling pathway against acute kidney injury. Cell Cycle 19(15):1941–1951
pubmed: 32615888 pmcid: 7469468 doi: 10.1080/15384101.2020.1784599
Laorodphun P, Cherngwelling R, Panya A, Arjinajarn P (2022) Curcumin protects rats against gentamicin-induced nephrotoxicity by amelioration of oxidative stress, endoplasmic reticulum stress and apoptosis. Pharm Biol 60(1):491–500
pubmed: 35188833 pmcid: 8865128 doi: 10.1080/13880209.2022.2037663
Biehl JK, Russell B (2009) Introduction to stem cell therapy. J Cardiovasc Nurs 24(2):98–103 quiz 4–5
pubmed: 19242274 pmcid: 4104807 doi: 10.1097/JCN.0b013e318197a6a5
ArefNezhad R, Motedayyen H (2023) Therapeutic features of mesenchymal stem cells and human amniotic epithelial cells in multiple sclerosis. Possibilities and Limitations in Current Translational Stem Cell Research: IntechOpen
De Gioia R, Biella F, Citterio G, Rizzo F, Abati E, Nizzardo M et al (2020) Neural Stem Cell Transplantation for Neurodegenerative Diseases. Int J Mol Sci. ;21(9)
Nabil M, Kassem DH, Ali AA, El-Mesallamy HO (2023) Adipose tissue‐derived mesenchymal stem cells ameliorate cognitive impairment in Alzheimer’s disease rat model: Emerging role of SIRT1. BioFactors 49(6):1121–1142
pubmed: 37323056 doi: 10.1002/biof.1982
Lee JK, Jin HK, Bae J-s (2009) Bone marrow-derived mesenchymal stem cells reduce brain amyloid-β deposition and accelerate the activation of microglia in an acutely induced Alzheimer’s disease mouse model. Neurosci Lett 450(2):136–141
pubmed: 19084047 doi: 10.1016/j.neulet.2008.11.059
Cui Y, Ma S, Zhang C, Cao W, Liu M, Li D et al (2017) Human umbilical cord mesenchymal stem cells transplantation improves cognitive function in Alzheimer’s disease mice by decreasing oxidative stress and promoting hippocampal neurogenesis. Behav Brain Res 320:291–301
pubmed: 28007537 doi: 10.1016/j.bbr.2016.12.021
Shin JY, Park HJ, Kim HN, Oh SH, Bae J-S, Ha H-J et al (2014) Mesenchymal stem cells enhance autophagy and increase β-amyloid clearance in Alzheimer disease models. Autophagy 10(1):32–44
pubmed: 24149893 pmcid: 4389879 doi: 10.4161/auto.26508
Llufriu S, Sepúlveda M, Blanco Y, Marín P, Moreno B, Berenguer J et al (2014) Randomized placebo-controlled phase II trial of autologous mesenchymal stem cells in multiple sclerosis. PLoS ONE 9(12):e113936
pubmed: 25436769 pmcid: 4250058 doi: 10.1371/journal.pone.0113936
Uccelli A, Laroni A, Brundin L, Clanet M, Fernandez O, Nabavi SM et al (2019) MEsenchymal StEm cells for Multiple Sclerosis (MESEMS): A randomized, double blind, cross-over phase I/II clinical trial with autologous mesenchymal stem cells for the therapy of multiple sclerosis. Trials 20:1–13
doi: 10.1186/s13063-019-3346-z
Uccelli A, Laroni A, Ali R, Battaglia MA, Blinkenberg M, Brundin L et al (2021) Safety, tolerability, and activity of mesenchymal stem cells versus placebo in multiple sclerosis (MESEMS): a phase 2, randomised, double-blind crossover trial. Lancet Neurol 20(11):917–929
pubmed: 34687636 doi: 10.1016/S1474-4422(21)00301-X
Oh KW, Noh MY, Kwon MS, Kim HY, Oh Si, Park J et al (2018) Repeated intrathecal mesenchymal stem cells for amyotrophic lateral sclerosis. Ann Neurol 84(3):361–373
pubmed: 30048006 pmcid: 6175096 doi: 10.1002/ana.25302
Chou C-H, Fan H-C, Hueng D-Y (2015) Potential of Neural Stem Cell-Based Therapy for Parkinson’s Disease. Parkinson’s Disease 2015(1):571475
pubmed: 26664823 pmcid: 4664819
Oz T, Kaushik A, Kujawska M (2023) Neural stem cells for Parkinson’s disease management: Challenges, nanobased support, and prospects. World J Stem Cells 15(7):687–700
pubmed: 37545757 pmcid: 10401423 doi: 10.4252/wjsc.v15.i7.687
Son D, Zheng J, Kim IY, Kang PJ, Park K, Priscilla L et al (2023) Human induced neural stem cells support functional recovery in spinal cord injury models. Exp Mol Med 55(6):1182–1192
pubmed: 37258581 pmcid: 10318049 doi: 10.1038/s12276-023-01003-2
Zhao L, Liu J-W, Shi H-Y, Ma Y-M (2021) Neural stem cell therapy for brain disease. World J stem cells 13(9):1278
pubmed: 34630862 pmcid: 8474718 doi: 10.4252/wjsc.v13.i9.1278
Liang Y, Li S, Li Y, Li M, Sun X, An J et al (2021) Impact of hydrogel stiffness on the induced neural stem cells modulation. Annals Translational Med. ;9(24)
Yousefifard M, Nasirinezhad F, Shardi Manaheji H, Janzadeh A, Hosseini M, Keshavarz M (2016) Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther 7:1–14
doi: 10.1186/s13287-016-0295-2
Bonaventura G, Incontro S, Iemmolo R, La Cognata V, Barbagallo I, Costanzo E et al (2020) Dental mesenchymal stem cells and neuro-regeneration: a focus on spinal cord injury. Cell Tissue Res 379:421–428
pubmed: 31776822 doi: 10.1007/s00441-019-03109-4
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA (2017) Concise review: dental pulp stem cells: a novel cell therapy for retinal and central nervous system repair. Stem Cells 35(1):61–67
pubmed: 27273755 doi: 10.1002/stem.2398
Shroff G, Gupta R (2015) Human embryonic stem cells in the treatment of patients with spinal cord injury. Annals Neurosciences 22(4):208
doi: 10.5214/ans.0972.7531.220404
Mu S, Wang J, Zhou G, Peng W, He Z, Zhao Z et al (2014) Transplantation of induced pluripotent stem cells improves functional recovery in Huntington’s disease rat model. PLoS ONE 9(7):e101185
pubmed: 25054283 pmcid: 4108311 doi: 10.1371/journal.pone.0101185
Lee Y-S, Cho D-C, Kim CH, Han I, Gil EY, Kim K-T (2019) Effect of curcumin on the inflammatory reaction and functional recovery after spinal cord injury in a hyperglycemic rat model. Spine J 19(12):2025–2039
pubmed: 31421247 doi: 10.1016/j.spinee.2019.07.013
Liau LL, Looi QH, Chia WC, Subramaniam T, Ng MH, Law JX (2020) Treatment of spinal cord injury with mesenchymal stem cells. Cell bioscience 10:1–17
doi: 10.1186/s13578-020-00475-3
Ruzicka J, Urdzikova L, Kloudova A, Amin A, Vallova J, Kubinova S et al (2018) Anti–inflammatory compound curcumin and mesenchymal stem cells in the treatment of spinal cord injury in rats. Acta Neurobiol Exp 78(4):358–374
doi: 10.21307/ane-2018-035
Lewis NE, Tabarestani TQ, Cellini BR, Zhang N, Marrotte EJ, Wang H et al (2022) Effect of acute physical interventions on pathophysiology and recovery after spinal cord injury: a comprehensive review of the literature. Neurospine 19(3):671
pubmed: 36203293 pmcid: 9537860 doi: 10.14245/ns.2244476.238
Wanjiang W, Xin C, Yaxing C, Jie W, Hongyan Z, Fei N et al (2022) Curcumin improves human umbilical cord-derived mesenchymal stem cell survival via ERK1/2 signaling and promotes motor outcomes after spinal cord injury. Cell Mol Neurobiol 42(4):1241–1252
pubmed: 33247374 doi: 10.1007/s10571-020-01018-7
Xiong W, Tian H, Li Z, Peng Z, Wang Y (2023) Curcumin-Primed Umbilical Cord Mesenchymal Stem Cells-Derived Extracellular Vesicles Improve Motor Functional Recovery of Mice with Complete Spinal Cord Injury by Reducing Inflammation and Enhancing Axonal Regeneration. Neurochem Res 48(5):1334–1346
pubmed: 36449198 doi: 10.1007/s11064-022-03832-5
Elkhenany H, Bonilla P, Giraldo E, Alastrue Agudo A, Edel MJ, Vicent MJ et al (2021) A hyaluronic acid demilune scaffold and polypyrrole-coated fibers carrying embedded human neural precursor cells and curcumin for surface capping of spinal cord injuries. Biomedicines 9(12):1928
pubmed: 34944744 pmcid: 8698735 doi: 10.3390/biomedicines9121928
Sun L, Wang F, Chen H, Liu D, Qu T, Li X et al (2019) Co-transplantation of human umbilical cord mesenchymal stem cells and human neural stem cells improves the outcome in rats with spinal cord injury. Cell Transplant 28(7):893–906
pubmed: 31012325 pmcid: 6719499 doi: 10.1177/0963689719844525
Bonilla P, Hernandez J, Giraldo E, González-Pérez MA, Alastrue-Agudo A, Elkhenany H et al (2021) Human-Induced Neural and Mesenchymal Stem Cell Therapy Combined with a Curcumin Nanoconjugate as a Spinal Cord Injury Treatment. Int J Mol Sci. ;22(11)
van Griensven M, Balmayor ER (2024) Extracellular vesicles are key players in mesenchymal stem cells’ dual potential to regenerate and modulate the immune system. Adv Drug Deliv Rev 207:115203
Chen K, Yu W, Zheng G, Xu Z, Yang C, Wang Y et al (2024) Biomaterial-based regenerative therapeutic strategies for spinal cord injury. NPG Asia Mater 16(1):5
doi: 10.1038/s41427-023-00526-4

Auteurs

Reza Arefnezhad (R)

Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran. Reza.aref1374@gmail.com.
Coenzyme R Research Institute, Tehran, Iran. Reza.aref1374@gmail.com.
Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran. Reza.aref1374@gmail.com.

Arian Jahandideh (A)

Faculty of medicine, Mazandaran University of Medical Sciences, Sari, Iran.

Mahdi Rezaei (M)

Faculty of Medicine, Shahed University, Tehran, Iran.

Mohamad Salehi Khatouni (MS)

School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.

Hooman Zarei (H)

Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.

Saleheh Jahani (S)

Department of pathology, University of California, San Diego, USA.

Ali Molavi (A)

Student Research Committee, Faculty of medicine, Ilam University of Medical Sciences, Ilam, Iran.

Mohammadhossein Hefzosseheh (M)

Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran.

Parisa Ghasempour (P)

Department of Medical Science and Health Services, Islamic Azad University, Yazd, Iran.

Hadis Moazen Movahedi (HM)

Department of Biotechnology Sciences, Cellular and Molecular Biology Branch, Islamic Azad University, Khuzestan, Iran.

Romina Jahandideh (R)

Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran.

Fatemeh Rezaei-Tazangi (F)

Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran. f.rezaei67@yahoo.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH