The historical transformation of individual concepts into populational ones: an explanatory shift in the gestation of the modern synthesis.

Conceptual change in biology Evolutionary causation Evolutionary explanations History of biology Statisticalism

Journal

History and philosophy of the life sciences
ISSN: 1742-6316
Titre abrégé: Hist Philos Life Sci
Pays: Switzerland
ID NLM: 8003052

Informations de publication

Date de publication:
01 Nov 2024
Historique:
received: 23 02 2024
accepted: 28 09 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

In this paper, I will conduct three interrelated analyses. First, I will develop an analysis of various concepts in the history of biology that used to refer to individual-level phenomena but were then reinterpreted by the Modern Synthesis in terms of populations. Second, a similar situation can be found in contemporary evolutionary theory. While different approaches reflect on the causal role of developing organisms in evolution, proponents of the Modern Synthesis refrain from any substantial change by reinterpreting and explaining individual-level phenomena from a population perspective. Finally, I will approach these historical and contemporary debates by arguing for the statistical reading of natural selection, which holds that explanations by natural selection are statistical. My main conclusion is that the historical conceptual reinterpretations belong to a new explanatory strategy developed by the Modern Synthesis based on population thinking. Adopting the statistical point of view has three advantages for the issues discussed in this paper. First, understanding historical conceptual change as part of an explanatory shift fits with the emergence of population biology as a discipline that employs statistical methods. Second, concerning current debates in evolutionary biology, the statisticalist reading can validate the goal of both sides of the dispute. It ascribes an invaluable role to the population statistical explanation of the MS and also commends the study of developmental and organismal causes of adaptive evolution. Finally, the division of explanatory roles in evolutionary biology, embarrassed by statisticalism, can be related to the different interpretations that important biological concepts have undergone throughout history and contemporary biology, i.e., that the division of explanatory roles allows for a division of conceptual interpretations.

Identifiants

pubmed: 39485612
doi: 10.1007/s40656-024-00638-2
pii: 10.1007/s40656-024-00638-2
doi:

Types de publication

Journal Article Historical Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

35

Subventions

Organisme : Agencia Nacional de Investigación e Innovación
ID : PD_NAC_2023_1_176930
Organisme : Comisión Sectorial de Investigación Científica
ID : 22520220100257UD

Informations de copyright

© 2024. Springer Nature Switzerland AG.

Références

Abrams, M. (2012). Measured, modeled, and causal conceptions of fitness. Frontiers in Genetics, 3, 196.
doi: 10.3389/fgene.2012.00196
Ågren, J. A. (2021). The gene’s-eye view of evolution. Oxford University Press.
Amundson, R. (2005). The changing role of the embryo in evolutionary thought. Cambridge University Press.
Areiw, A., & Lewontin, R. (2004). The confusions of fitness. The British Journal for the Philosophy of Science, 55(2), 347–363.
doi: 10.1093/bjps/55.2.347
Ariew, A. (2003). Ernst Mayr’s ultimate/proximate distinction reconsidered and reconstructed. Biology and Philosophy, 18(4), 553–565.
doi: 10.1023/A:1025565119032
Ariew, A., Rice, C., & Rohwer, Y. (2015). Autonomous-statistical explanations and natural selection. The British Journal for the Philosophy of Science, 66(3).
Bateson, P., & Gluckman, P. (2011). Plasticity, robustness, development and evolution. Cambridge University Press.
Bonduriansky, R. (2012). Rethinking heredity, again. Trends in Ecology & Evolution, 27(6), 330–336.
doi: 10.1016/j.tree.2012.02.003
Charlesworth, D., Barton, N. H., & Charlesworth, B. (2017). The sources of adaptive variation. Proceedings of the Royal Society B: Biological Sciences, 284(1855), 20162864.
Dawkins, R. (1976). The selfish gene. Oxford University Press.
de Jong, G. (2005). Evolution of phenotypic plasticity: Patterns of plasticity and the emergence of ecotypes. New Phytologist, 166, 101–118.
doi: 10.1111/j.1469-8137.2005.01322.x
Depew, D. (2003). Baldwin and his many effects. Evolution and learning. In M. B. Weber, & D. Depew (Eds.), Evolution and learning: The Baldwin effect reconsidered (pp. 3–31). MIT Press.
Depew, D. J. (2011). Adaptation as process: The future of darwinism and the legacy of Theodosius Dobzhansky. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences, 42(1), 89–98.
doi: 10.1016/j.shpsc.2010.11.006
Dickins, T. E., & Barton, R. A. (2013). Reciprocal causation and the proximate–ultimate distinction. Biology & Philosophy, 28, 747–756.
doi: 10.1007/s10539-012-9345-z
Dickins, T. E., & Rahman, Q. (2012). The extended evolutionary synthesis and the role of soft inheritance in evolution. Proceedings of the Royal Society B: Biological Sciences, 279(1740), 2913–2921.
Dobzhansky, T. (1955). A review of some fundamental concepts and problems of population genetics. Cold Spring Harbor Symposia on Quantitative Biology, 20, 1–15.
doi: 10.1101/SQB.1955.020.01.003
Futuyma, D. (2017). Evolutionary biology today and the call for an extended synthesis. Interface Focus, 7(5), 20160145.
doi: 10.1098/rsfs.2016.0145
Gilbert, S. F. (1994). Dobzhansky, Waddington and Schmalhausen: Embryology and the modern synthesis. In M. B. Adams (Ed.), The evolution of Theodosius Dobzhansky: Essays on his life and thought in Russia and America (pp. 143–154). Princeton University Press.
Gilbert, S. (2011). The decline of soft inheritance. In S. Gissis, & E. Jablonka (Eds.), Transformations of Lamarckism: From subtle fluids to molecular biology (pp. 121–125). MIT Press.
Gilbert, S. F., & Epel, D. (2015). Ecological developmental biology: The environmental regulation of development, health, and evolution. Sinauer.
Gissis, S., & Jablonka, E. (Eds.). (2011). Transformations of Lamarckism: From subtle fluids to molecular biology. Vienna Series in Theoretical Biology. The MIT Press.
Godfrey-Smith, P. (2009). Darwinian populations and natural selection. Oxford University Press.
Gottlieb, G. (1992). Individual development and evolution: The genesis of novel behavior. Oxford University Press.
Griesemer, J. (2000). Development, culture, and the units of inheritance. Philosophy of Science, 67, 348–368.
doi: 10.1086/392831
Griffiths, P., & Gray, R. (1994). Developmental systems and evolutionary explanation. Journal of Philosophy, 91(6), 277–304.
doi: 10.2307/2940982
Griffiths, P., & Stotz, K. (2013). Genetics and philosophy: An introduction. Cambridge University Press.
Gupta, M., Prasad, N. G., Dey, S., Joshi, A., & Vidya, T. N. C. (2017). Niche construction in evolutionary theory: The construction of an academic niche? Journal of Genetics, 96(3), 491–504.
doi: 10.1007/s12041-017-0787-6
Haig, D. (2007). Weismann rules! OK? Epigenetics and the Lamarckian temptation. Biology & Philosophy, 22, 415–428.
doi: 10.1007/s10539-006-9033-y
Jablonka, E. (2007). The developmental construction of heredity. Developmental Psychobiology, 49(8), 808–817.
doi: 10.1002/dev.20260
Jablonka, E., & Lamb, M. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. MIT Press.
Jablonka, E., & Lamb, M. J. (2008). The epigenome in evolution: Beyond the modern synthesis. Информационный вестник ВОГиС, 12(1–2), 242–254.
Jablonka, E., & Lamb, M. (2020). Inheritance systems and the extended synthesis. Cambridge University Press.
Keller, E. F. (2010). The mirage of a space between nature and nurture. Duke University Press.
Mameli, M. (2005). The inheritance of features. Biology and Philosophy, 20, 365–399.
doi: 10.1007/s10539-004-0560-0
Matthen, M., & Ariew, A. (2002). Two ways of thinking about fitness and natural selection. The Journal of Philosophy, 99(2), 55–83.
doi: 10.2307/3655552
Matthen, M., & Ariew, A. (2009). Selection and causation. Philosophy of Science, 76, 201–224.
doi: 10.1086/648102
Mesoudi, A., Blanchet, S., Charmantier, A., Danchin, E., Fogarty, L., Jablonka, E., Laland, K. N., Morgan, T., Müller, G., Odling-Smee, F. J., & Pujol, B. (2013). Is non-genetic inheritance just a proximate mechanism? A corroboration of the extended evolutionary synthesis. Biological Theory, 7, 189–195.
doi: 10.1007/s13752-013-0091-5
Millstein, R. (2002). Are random drift and natural selection conceptually distinct? Biology and Philosophy, 17(1), 33–53.
doi: 10.1023/A:1012990800358
Millstein, R. (2006). Natural selection as a population-level causal process. The British Journal for the Philosophy of Science, 57(4), 627–653.
doi: 10.1093/bjps/axl025
Millstein, R., Skipper, R. A. J., & Dietrich, M. R. (2009). Mis)interpreting mathematical models: Drift as a physical process. Philosophy, Theory, and Practice in Biology, 1, e002.
Nanney, D. L. (1958). Epigenetic control systems. Proceedings of the National Academy of Sciences, 44(7).
Noble, D. (2021). The illusions of the modern synthesis. Biosemiotics, 14(1), 5–24.
doi: 10.1007/s12304-021-09405-3
Otsuka, J. (2016). A critical review of the statisticalist debate. Biology and Philosophy, 31, 459–482.
doi: 10.1007/s10539-016-9528-0
Pence, C. (2021). The causal structure of natural selection. Cambridge Elements in the Philosophy of Biology.
Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Phenotypic plasticity and evolution by genetic assimilation. Journal of Experimental Biology, 209(12), 2362–2367.
doi: 10.1242/jeb.02070
Rama, T. (2022). Agential teleosemantics. Doctoral Dissertation. Autonomous University of Barcelona.
Rama, T. (2023). Evolutionary causation and teleosemantics. In J. M. Viejo, & M. Sanjuan (Eds.), Life and mind: New directions in the philosophy of biology and cognitive sciences (pp. 301–329). Springer. https://doi.org/10.1007/978-3-031-30304-3_14
Rama, T. (2024a). The explanatory role of umwelt in evolutionary theory: Introducing von Baer’s reflections on teleological development. Biosemiotics, 1–26. https://doi.org/10.1007/s12304-024-09569-8
Rama, T. (2024b). Is a Cognitive revolution in theoretical biology underway? Foundations of Science, 1–22. https://doi.org/10.1007/s10699-024-09950-3
Ramsey, G. (2016). The causal structure of evolutionary theory. Australasian Journal of Philosophy, 94(3), 421–434.
doi: 10.1080/00048402.2015.1111398
Robert, J. S. (2004). Embryology, epigenesis and evolution: Taking development seriously. Cambridge University Press.
Rosenberg, A. (1997). Reductionism redux: Computing the embryo. Biology and Philosophy, 12, 445–470.
doi: 10.1023/A:1006574719901
Sarkar, S. (1999). From the reaktionsnorm to the adaptive norm: The norm of reaction, 1909–1960. Biology and Philosophy, 14(2), 235–252.
doi: 10.1023/A:1006690502648
Schlichting, C. D., & Pigliucci, M. (1998). Phenotypic evolution: A reaction norm perspective. Sinauer associates incorporated.
Shea, N. (2007). Representation in the genome and in other inheritance systems. Biology & Philosophy, 22(3), 313–331.
doi: 10.1007/s10539-006-9046-6
Shea, N. (2013). Inherited representations are read in development. The British Journal for the Philosophy of Science, 64(1), 1–31.
doi: 10.1093/bjps/axr050
Simpson, G. G. (1953). The Baldwin effect Evolution, 7(2), 110.
Sober, E. (1980). Evolution, population thinking, and essentialism. Philosophy of Science, 47(3), 350–383.
doi: 10.1086/288942
Sober, E. (1984). The nature of selection: Evolutionary theory in philosophical focus. University of Chicago Press.
Sterelny, K., Smith, K., & Dickison, M. (1996). The extended replicator. Biology and Philosophy, 11(3), 377–403.
doi: 10.1007/BF00128788
Stotz, K., & Griffiths, P. (2016). Epigenetics: Ambiguities and implications. History and Philosophy of the Life Sciences, 38(4), 1–20.
doi: 10.1007/s40656-016-0121-2
Sultan, S. (2015). Organism and environment: Ecological development, niche construction, and adaption. Oxford University Press.
Sultan, S. (2017). Developmental plasticity: Re-conceiving the genotype. Interface Focus, 7(5), 20170009.
doi: 10.1098/rsfs.2017.0009
Sultan, S. (2019). Genotype-environment interaction and the unscripted reaction norm. In T. Uller, & K. N. Laland (Eds.), Evolutionary causation: Biological and philosophical reflections (pp. 109–127). The MIT Press.
Sultan, S. E. (2021). Phenotypic plasticity as an intrinsic property of organisms. In David W. Pfennig (Ed.) Phenotypic plasticity & evolution (pp. 3–24). CRC Press, Boca Raton.
doi: 10.1201/9780429343001-2
Svensson, E. I. (2018). On reciprocal causation in the evolutionary process. Evolutionary Biology, 45(1), 1–14.
doi: 10.1007/s11692-017-9431-x
Wagner, A. (2013). Robustness and evolvability in living systems. Princeton University Press.
Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton University Press.
Walsh, D. (2003). Fit and diversity: Explaining adaptive evolution. Philosophy of Science, 70(2), 280–301.
doi: 10.1086/375468
Walsh, D. (2007). The pomp of superfluous causes: The interpretation of evolutionary theory. Philosophy of Science, 74(3), 281–303.
doi: 10.1086/520777
Walsh, D. (2015). Organisms, agency, and evolution. Cambridge University Press.
Walsh, D. (2019). The paradox of population thinking: First order causes and higher order effects. In T. Uller, & K. N. Laland (Eds.), Evolutionary causation: Biological and philosophical reflections (pp. 227–246). The MIT Press.
Walsh, D., Lewens, T., & Ariew, A. (2002). The trials of life: Natural selection and random drift. Philosophy of Science, 69(3), 429–446.
doi: 10.1086/342454
Walsh, D. M., Ariew, A., & Matthen, M. (2017). Four pillars of statisticalism. Philosophy, Theory, and Practice in Biology, 9(20171201).
Waters, C. K. (2007). Causes that make a difference. The Journal of Philosophy, 104(11), 551–579.
doi: 10.5840/jphil2007104111
West-Eberhard, M. (2003). Developmental plasticity and evolution. Oxford University Press.
Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton University Press.

Auteurs

Tiago Rama (T)

Department of Philosophy, University of the Republic, Montevideo, Uruguay. trama.folco@gmail.com.

Articles similaires

A scenario for an evolutionary selection of ageing.

Tristan Roget, Claire Macmurray, Pierre Jolivet et al.
1.00
Aging Selection, Genetic Biological Evolution Animals Fertility
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant
Carcinoma, Merkel Cell Humans Skin Neoplasms United States Famous Persons
1.00
Humans Depression, Postpartum Female United States History, 21st Century

Classifications MeSH