Titre : Méthode en double aveugle

Méthode en double aveugle : Questions médicales fréquentes

Termes MeSH sélectionnés :

Data Interpretation, Statistical
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Méthode en double aveugle : Questions médicales les plus fréquentes", "headline": "Méthode en double aveugle : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Méthode en double aveugle : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-04-13", "dateModified": "2025-04-08", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Méthode en double aveugle" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Méthodologie en recherche épidémiologique", "url": "https://questionsmedicales.fr/mesh/D015340", "about": { "@type": "MedicalCondition", "name": "Méthodologie en recherche épidémiologique", "code": { "@type": "MedicalCode", "code": "D015340", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "N06.850.520.445" } } }, "about": { "@type": "MedicalCondition", "name": "Méthode en double aveugle", "alternateName": "Double-Blind Method", "code": { "@type": "MedicalCode", "code": "D004311", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Hiroyoshi Yajima", "url": "https://questionsmedicales.fr/author/Hiroyoshi%20Yajima", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Miho Takayama", "url": "https://questionsmedicales.fr/author/Miho%20Takayama", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Judith M Schlaeger", "url": "https://questionsmedicales.fr/author/Judith%20M%20Schlaeger", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Nobuari Takakura", "url": "https://questionsmedicales.fr/author/Nobuari%20Takakura", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Ted J Kaptchuk", "url": "https://questionsmedicales.fr/author/Ted%20J%20Kaptchuk", "affiliation": { "@type": "Organization", "name": "Program in Placebo Studies, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, USA." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Impact of redefining statistical significance on P-hacking and false positive rates: An agent-based model.", "datePublished": "2024-05-16", "url": "https://questionsmedicales.fr/article/38753677", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1371/journal.pone.0303262" } }, { "@type": "ScholarlyArticle", "name": "Statistical biases due to anonymization evaluated in an open clinical dataset from COVID-19 patients.", "datePublished": "2022-12-21", "url": "https://questionsmedicales.fr/article/36543828", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41597-022-01669-9" } }, { "@type": "ScholarlyArticle", "name": "Handling Missing Data in COVID-19 Incidence Estimation: Secondary Data Analysis.", "datePublished": "2024-08-20", "url": "https://questionsmedicales.fr/article/39166439", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.2196/53719" } }, { "@type": "ScholarlyArticle", "name": "Bayesian pattern-mixture models for dropout and intermittently missing data in longitudinal data analysis.", "datePublished": "2023-05-23", "url": "https://questionsmedicales.fr/article/37221346", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3758/s13428-023-02128-y" } }, { "@type": "ScholarlyArticle", "name": "A mathematical framework for the statistical interpretation of biological growth models.", "datePublished": "2024-10-07", "url": "https://questionsmedicales.fr/article/39384030", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.biosystems.2024.105342" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Environnement et santé publique", "item": "https://questionsmedicales.fr/mesh/D004778" }, { "@type": "ListItem", "position": 3, "name": "Santé publique", "item": "https://questionsmedicales.fr/mesh/D011634" }, { "@type": "ListItem", "position": 4, "name": "Méthodes épidémiologiques", "item": "https://questionsmedicales.fr/mesh/D004812" }, { "@type": "ListItem", "position": 5, "name": "Méthodologie en recherche épidémiologique", "item": "https://questionsmedicales.fr/mesh/D015340" }, { "@type": "ListItem", "position": 6, "name": "Méthode en double aveugle", "item": "https://questionsmedicales.fr/mesh/D004311" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Méthode en double aveugle - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Méthode en double aveugle", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-03", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Méthode en double aveugle", "description": "Comment la méthode en double aveugle aide-t-elle au diagnostic ?\nQuels tests utilisent la méthode en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Data+Interpretation,+Statistical&page=3#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Méthode en double aveugle", "description": "Les symptômes sont-ils évalués en double aveugle ?\nComment les symptômes sont-ils mesurés en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Data+Interpretation,+Statistical&page=3#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Méthode en double aveugle", "description": "La méthode en double aveugle est-elle utilisée en prévention ?\nComment la prévention est-elle testée en double aveugle ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Data+Interpretation,+Statistical&page=3#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Méthode en double aveugle", "description": "Quels traitements utilisent souvent la méthode en double aveugle ?\nPourquoi utiliser la méthode en double aveugle pour les traitements ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Data+Interpretation,+Statistical&page=3#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Méthode en double aveugle", "description": "Les complications sont-elles prises en compte en double aveugle ?\nComment les complications sont-elles rapportées ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Data+Interpretation,+Statistical&page=3#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Méthode en double aveugle", "description": "La méthode en double aveugle évalue-t-elle les facteurs de risque ?\nComment les facteurs de risque sont-ils pris en compte ?", "url": "https://questionsmedicales.fr/mesh/D004311?mesh_terms=Data+Interpretation,+Statistical&page=3#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment la méthode en double aveugle aide-t-elle au diagnostic ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Elle permet d'évaluer l'efficacité d'un traitement sans biais d'observation." } }, { "@type": "Question", "name": "Quels tests utilisent la méthode en double aveugle ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Des essais cliniques pour tester des médicaments ou des interventions." } }, { "@type": "Question", "name": "Les symptômes sont-ils évalués en double aveugle ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Oui, cela permet d'éviter que les attentes influencent les rapports de symptômes." } }, { "@type": "Question", "name": "Comment les symptômes sont-ils mesurés en double aveugle ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Par des échelles standardisées, sans que les évaluateurs sachent le traitement reçu." } }, { "@type": "Question", "name": "La méthode en double aveugle est-elle utilisée en prévention ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Oui, pour évaluer l'efficacité des vaccins ou des interventions préventives." } }, { "@type": "Question", "name": "Comment la prévention est-elle testée en double aveugle ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "En comparant un groupe recevant le traitement préventif à un groupe placebo." } }, { "@type": "Question", "name": "Quels traitements utilisent souvent la méthode en double aveugle ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Les essais de nouveaux médicaments, thérapies ou interventions chirurgicales." } }, { "@type": "Question", "name": "Pourquoi utiliser la méthode en double aveugle pour les traitements ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Pour garantir que les résultats ne soient pas influencés par des attentes ou des biais." } }, { "@type": "Question", "name": "Les complications sont-elles prises en compte en double aveugle ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, pour évaluer les effets indésirables des traitements sans biais." } }, { "@type": "Question", "name": "Comment les complications sont-elles rapportées ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Par des rapports standardisés, sans que les évaluateurs sachent le traitement reçu." } }, { "@type": "Question", "name": "La méthode en double aveugle évalue-t-elle les facteurs de risque ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Indirectement, en contrôlant les variables pour isoler l'effet du traitement." } }, { "@type": "Question", "name": "Comment les facteurs de risque sont-ils pris en compte ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "En randomisant les participants pour équilibrer les caractéristiques entre groupes." } } ] } ] }

Sources (10000 au total)

Handling Missing Data in COVID-19 Incidence Estimation: Secondary Data Analysis.

The COVID-19 pandemic has revealed significant challenges in disease forecasting and in developing a public health response, emphasizing the need to manage missing data from various sources in making ... We aimed to show how handling missing data can affect estimates of the COVID-19 incidence rate (CIR) in different pandemic situations.... This study used data from the COVID-19/SARS-CoV-2 surveillance system at the National Institute of Hygiene and Epidemiology, Vietnam. We separated the available data set into 3 distinct periods: zero ... Our study examined missing data imputation performance across 3 study time periods: zero COVID-19 (n=3149), transition (n=1290), and new normal (n=9288). Imputation analyses showed that K-nearest neig... Our study emphasizes the importance of understanding that the specific imputation method used by investigators should be tailored to the specific epidemiological context and data collection environmen...

A wide range of missing imputation approaches in longitudinal data: a simulation study and real data analysis.

Missing data is a pervasive problem in longitudinal data analysis. Several single-imputation (SI) and multiple-imputation (MI) approaches have been proposed to address this issue. In this study, for t... Using different simulation scenarios derived from a real data set, we compared the performance of cross, trajectory mean, interpolation, copy-mean, and MI methods (27 approaches) to impute missing lon... The longitudinal regression tree algorithm outperformed based on the criteria such as MSE, RMSE, and MAD than the linear mixed-effects model (LMM) for analyzing the TCGS and simulated data using the m... Both SI and MI approaches performed better using the longitudinal regression tree algorithm compared with the parametric longitudinal models. Based on the results from both the real and simulated data...

Statistical methods leveraging the hierarchical structure of adverse events for signal detection in clinical trials: a scoping review of the methodological literature.

In randomised controlled trials with efficacy-related primary outcomes, adverse events are collected to monitor potential intervention harms. The analysis of adverse event data is challenging, due to ... We conducted a methodological scoping review of the literature to identify all existing methods using structures within the data to detect signals for adverse reactions in a trial. Embase, MEDLINE, Sc... We identified 18 different methods from 14 sources. These were categorised as either Bayesian approaches (n=11), which flagged events based on posterior estimates of treatment effects, or error contro... We found a large number of analysis methods that use the group structures of adverse events. Continuous methodological developments in this area highlight the growing awareness that better practices a...

Multicomponent family support intervention in intensive care units: statistical analysis plan for the cluster-randomized controlled FICUS trial.

The FICUS trial is a cluster-randomized superiority trial to determine the effectiveness of a nurse-led, interprofessional family support intervention (FSI) on the quality of care, family management a...

Ultrasound-guided supraclavicular block versus Bier block for emergency reduction of upper limb injuries: statistical analysis plan.

Ultrasound-guided supraclavicular block (UGSCB) is an emerging technique gaining interest amongst emergency physicians that provides regional anaesthesia to the upper limb to tolerate painful procedur... SUPERB (SUPraclavicular block for Emergency Reduction versus Bier block) is a prospective open-label non-inferiority randomised controlled trial comparing the effectiveness of UGSCB versus BB for clos... Primary outcome analysis will be performed using both the intention-to-treat and per-protocol populations. The between-group difference in maximum pain intensity will be assessed using linear regressi... SUPERB is the first randomised controlled trial to investigate the effectiveness and safety of UGSCB in the ED. The trial has the potential to demonstrate that UGSCB is an alternative safe and effecti...

A hybrid digital parenting programme to prevent abuse of adolescents in Tanzania: statistical analysis plan for a pragmatic cluster randomised controlled trial.

Globally, violence against children poses substantial health and economic challenges, with estimated costs nearing USD 7 trillion. This prompts the urgent call for effective evidence-based interventio... This study is a pragmatic, two-arm, cluster-randomised trial in Mwanza, Tanzania's urban and peri-urban areas. Assessments are set for baseline, 1 month post-intervention, and 12 months post-intervent... Preparations for the trial began in December 2022, including community mobilisation and sensitisation. Rolling recruitment, baseline data collection, and implementation onboarding took place between A... The trial was registered on the Open Science Framework on 14 March 2023: https://doi.org/10.17605/OSF.IO/T9FXZ . The trial protocol was published in Trials 25, 119 (2024): Baerecke, L., Ornellas, A., ...