Titre : Protéines de filaments intermédiaires

Protéines de filaments intermédiaires : Questions médicales fréquentes

Termes MeSH sélectionnés :

Deep Learning
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Protéines de filaments intermédiaires : Questions médicales les plus fréquentes", "headline": "Protéines de filaments intermédiaires : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Protéines de filaments intermédiaires : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-06-03", "dateModified": "2025-02-28", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Protéines de filaments intermédiaires" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Protéines du cytosquelette", "url": "https://questionsmedicales.fr/mesh/D003598", "about": { "@type": "MedicalCondition", "name": "Protéines du cytosquelette", "code": { "@type": "MedicalCode", "code": "D003598", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220" } } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Desmine", "alternateName": "Desmin", "url": "https://questionsmedicales.fr/mesh/D003893", "about": { "@type": "MedicalCondition", "name": "Desmine", "code": { "@type": "MedicalCode", "code": "D003893", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.200" } } }, { "@type": "MedicalWebPage", "name": "Protéine gliofibrillaire acide", "alternateName": "Glial Fibrillary Acidic Protein", "url": "https://questionsmedicales.fr/mesh/D005904", "about": { "@type": "MedicalCondition", "name": "Protéine gliofibrillaire acide", "code": { "@type": "MedicalCode", "code": "D005904", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.400" } } }, { "@type": "MedicalWebPage", "name": "Kératine-15", "alternateName": "Keratin-15", "url": "https://questionsmedicales.fr/mesh/D053569", "about": { "@type": "MedicalCondition", "name": "Kératine-15", "code": { "@type": "MedicalCode", "code": "D053569", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.450.300.500" } } }, { "@type": "MedicalWebPage", "name": "Vimentine", "alternateName": "Vimentin", "url": "https://questionsmedicales.fr/mesh/D014746", "about": { "@type": "MedicalCondition", "name": "Vimentine", "code": { "@type": "MedicalCode", "code": "D014746", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.900" } } } ], "about": { "@type": "MedicalCondition", "name": "Protéines de filaments intermédiaires", "alternateName": "Intermediate Filament Proteins", "code": { "@type": "MedicalCode", "code": "D007381", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Sarah Köster", "url": "https://questionsmedicales.fr/author/Sarah%20K%C3%B6ster", "affiliation": { "@type": "Organization", "name": "Institute for X-Ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany." } }, { "@type": "Person", "name": "Sandrine Etienne-Manneville", "url": "https://questionsmedicales.fr/author/Sandrine%20Etienne-Manneville", "affiliation": { "@type": "Organization", "name": "Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France. Electronic address: setienne@pasteur.fr." } }, { "@type": "Person", "name": "Charlotta Lorenz", "url": "https://questionsmedicales.fr/author/Charlotta%20Lorenz", "affiliation": { "@type": "Organization", "name": "Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany." } }, { "@type": "Person", "name": "Anna V Schepers", "url": "https://questionsmedicales.fr/author/Anna%20V%20Schepers", "affiliation": { "@type": "Organization", "name": "Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany." } }, { "@type": "Person", "name": "Rudolf E Leube", "url": "https://questionsmedicales.fr/author/Rudolf%20E%20Leube", "affiliation": { "@type": "Organization", "name": "Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Use of machine learning and deep learning to predict particulate", "datePublished": "2023-09-15", "url": "https://questionsmedicales.fr/article/37716314", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.jenvrad.2023.107294" } }, { "@type": "ScholarlyArticle", "name": "A deep learning model for anti-inflammatory peptides identification based on deep variational autoencoder and contrastive learning.", "datePublished": "2024-08-08", "url": "https://questionsmedicales.fr/article/39117712", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41598-024-69419-y" } }, { "@type": "ScholarlyArticle", "name": "Deep Learning Subtraction Angiography: Improved Generalizability with Transfer Learning.", "datePublished": "2022-12-16", "url": "https://questionsmedicales.fr/article/36529442", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.jvir.2022.12.008" } }, { "@type": "ScholarlyArticle", "name": "A Machine Learning and Deep Learning Approach for Recognizing Handwritten Digits.", "datePublished": "2022-07-15", "url": "https://questionsmedicales.fr/article/35875749", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1155/2022/9869948" } }, { "@type": "ScholarlyArticle", "name": "Editorial of Special Issue \"Deep Learning and Machine Learning in Bioinformatics\".", "datePublished": "2022-06-14", "url": "https://questionsmedicales.fr/article/35743052", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3390/ijms23126610" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Acides aminés, peptides et protéines", "item": "https://questionsmedicales.fr/mesh/D000602" }, { "@type": "ListItem", "position": 3, "name": "Protéines", "item": "https://questionsmedicales.fr/mesh/D011506" }, { "@type": "ListItem", "position": 4, "name": "Protéines du cytosquelette", "item": "https://questionsmedicales.fr/mesh/D003598" }, { "@type": "ListItem", "position": 5, "name": "Protéines de filaments intermédiaires", "item": "https://questionsmedicales.fr/mesh/D007381" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Protéines de filaments intermédiaires - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Protéines de filaments intermédiaires", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-15", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Général", "headline": "Général sur Protéines de filaments intermédiaires", "description": "Erreur lors de la génération.", "url": "https://questionsmedicales.fr/mesh/D007381?mesh_terms=Deep+Learning&page=2#section-général" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Erreur lors de la génération.", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Veuillez réessayer ultérieurement." } } ] } ] }

Sources (10000 au total)

Deep Learning Subtraction Angiography: Improved Generalizability with Transfer Learning.

To investigate the utility and generalizability of deep learning subtraction angiography (DLSA) for generating synthetic digital subtraction angiography (DSA) images without misalignment artifacts.... DSA images and native digital angiograms of the cerebral, hepatic, and splenic vasculature, both with and without motion artifacts, were retrospectively collected. Images were divided into a motion-fr... Compared with the traditional DSA method, the proposed approach was found to generate synthetic DSA images with significantly fewer background artifacts (a mean rating of 1.9 [95% CI, 1.1-2.6] vs 3.5 ... DLSA successfully generates synthetic angiograms without misalignment artifacts, is improved through transfer learning, and generalizes reliably to novel vasculature that was not included in the train...

Nailfold capillaroscopy and deep learning in diabetes.

To determine whether nailfold capillary images, acquired using video capillaroscopy, can provide diagnostic information about diabetes and its complications.... Nailfold video capillaroscopy was performed in 120 adult patients with and without type 1 or type 2 diabetes, and with and without cardiovascular disease. Nailfold images were analyzed using convoluti... A total of 5236 nailfold images were acquired from 120 participants (mean 44 images per participant) and were all available for analysis. Models were able to accurately identify the presence of diabet... This proof-of-concept study demonstrates the potential of machine learning for identifying people with microvascular capillary changes from diabetes based on nailfold images, and for possibly identify...