Titre : Protéines de filaments intermédiaires

Protéines de filaments intermédiaires : Questions médicales fréquentes

Termes MeSH sélectionnés :

Regression Analysis
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Protéines de filaments intermédiaires : Questions médicales les plus fréquentes", "headline": "Protéines de filaments intermédiaires : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Protéines de filaments intermédiaires : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-06-03", "dateModified": "2025-02-28", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Protéines de filaments intermédiaires" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Protéines du cytosquelette", "url": "https://questionsmedicales.fr/mesh/D003598", "about": { "@type": "MedicalCondition", "name": "Protéines du cytosquelette", "code": { "@type": "MedicalCode", "code": "D003598", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220" } } }, "hasPart": [ { "@type": "MedicalWebPage", "name": "Desmine", "alternateName": "Desmin", "url": "https://questionsmedicales.fr/mesh/D003893", "about": { "@type": "MedicalCondition", "name": "Desmine", "code": { "@type": "MedicalCode", "code": "D003893", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.200" } } }, { "@type": "MedicalWebPage", "name": "Protéine gliofibrillaire acide", "alternateName": "Glial Fibrillary Acidic Protein", "url": "https://questionsmedicales.fr/mesh/D005904", "about": { "@type": "MedicalCondition", "name": "Protéine gliofibrillaire acide", "code": { "@type": "MedicalCode", "code": "D005904", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.400" } } }, { "@type": "MedicalWebPage", "name": "Kératine-15", "alternateName": "Keratin-15", "url": "https://questionsmedicales.fr/mesh/D053569", "about": { "@type": "MedicalCondition", "name": "Kératine-15", "code": { "@type": "MedicalCode", "code": "D053569", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.450.300.500" } } }, { "@type": "MedicalWebPage", "name": "Vimentine", "alternateName": "Vimentin", "url": "https://questionsmedicales.fr/mesh/D014746", "about": { "@type": "MedicalCondition", "name": "Vimentine", "code": { "@type": "MedicalCode", "code": "D014746", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.220.475.900" } } } ], "about": { "@type": "MedicalCondition", "name": "Protéines de filaments intermédiaires", "alternateName": "Intermediate Filament Proteins", "code": { "@type": "MedicalCode", "code": "D007381", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Sarah Köster", "url": "https://questionsmedicales.fr/author/Sarah%20K%C3%B6ster", "affiliation": { "@type": "Organization", "name": "Institute for X-Ray Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany." } }, { "@type": "Person", "name": "Sandrine Etienne-Manneville", "url": "https://questionsmedicales.fr/author/Sandrine%20Etienne-Manneville", "affiliation": { "@type": "Organization", "name": "Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015 Paris, France. Electronic address: setienne@pasteur.fr." } }, { "@type": "Person", "name": "Charlotta Lorenz", "url": "https://questionsmedicales.fr/author/Charlotta%20Lorenz", "affiliation": { "@type": "Organization", "name": "Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany." } }, { "@type": "Person", "name": "Anna V Schepers", "url": "https://questionsmedicales.fr/author/Anna%20V%20Schepers", "affiliation": { "@type": "Organization", "name": "Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany." } }, { "@type": "Person", "name": "Rudolf E Leube", "url": "https://questionsmedicales.fr/author/Rudolf%20E%20Leube", "affiliation": { "@type": "Organization", "name": "Institute of Molecular and Cellular Anatomy, RWTH Aachen University, Aachen, Germany." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "A panel regression analysis for the COVID-19 epidemic in the United States.", "datePublished": "2022-08-19", "url": "https://questionsmedicales.fr/article/35984832", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1371/journal.pone.0273344" } }, { "@type": "ScholarlyArticle", "name": "Application of Multiple Regression Analysis Model in Table Tennis Competition.", "datePublished": "2022-08-01", "url": "https://questionsmedicales.fr/article/35958383", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1155/2022/6748465" } }, { "@type": "ScholarlyArticle", "name": "Regression analysis of topological indices for predicting efficacy of Alzheimer's drugs.", "datePublished": "2024-11-01", "url": "https://questionsmedicales.fr/article/39485746", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1371/journal.pone.0309477" } }, { "@type": "ScholarlyArticle", "name": "A multiple imputation-based sensitivity analysis approach for regression analysis with a missing not at random covariate.", "datePublished": "2023-03-30", "url": "https://questionsmedicales.fr/article/36997162", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1002/sim.9723" } }, { "@type": "ScholarlyArticle", "name": "Biologicals for the treatment of lupus nephritis: a Bayesian network meta-regression analysis.", "datePublished": "2024-08-30", "url": "https://questionsmedicales.fr/article/39281677", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3389/fimmu.2024.1445814" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Acides aminés, peptides et protéines", "item": "https://questionsmedicales.fr/mesh/D000602" }, { "@type": "ListItem", "position": 3, "name": "Protéines", "item": "https://questionsmedicales.fr/mesh/D011506" }, { "@type": "ListItem", "position": 4, "name": "Protéines du cytosquelette", "item": "https://questionsmedicales.fr/mesh/D003598" }, { "@type": "ListItem", "position": 5, "name": "Protéines de filaments intermédiaires", "item": "https://questionsmedicales.fr/mesh/D007381" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Protéines de filaments intermédiaires - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Protéines de filaments intermédiaires", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-17", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Général", "headline": "Général sur Protéines de filaments intermédiaires", "description": "Erreur lors de la génération.", "url": "https://questionsmedicales.fr/mesh/D007381?mesh_terms=Regression+Analysis&page=2#section-général" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Erreur lors de la génération.", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Veuillez réessayer ultérieurement." } } ] } ] }

Sources (10000 au total)

Biologicals for the treatment of lupus nephritis: a Bayesian network meta-regression analysis.

Previous studies comparing the efficacy and safety of different treatment regimens for lupus nephritis are scarce. Moreover, confounding factors such as the duration of follow-up were hardly adjusted ... To rigorously investigate the efficacy and safety of biologics in patients with lupus nephritis using Bayesian network meta-regression analyses that adjust for the follow-up period, in order to provid... Databases comprising PubMed, Embase, MedlinePlus, Cochrane Library, Google Scholars, and Scopus were retrieved for eligible articles from inception to February 29, 2024. The primary endpoint was the c... Ten studies involving 2138 patients and 11 treatment regimens were ultimately included. In the original analysis, for the primary endpoint, compared to the control group, obinutuzumab (22.6 months), a... Considering the efficacy and safety and "time window" phenomenon, we recommend obinutuzumab as the preferred treatment for LN. Certainly, more rigorous head-to-head clinical trials are warranted to va...

Understanding the drowsy driving crash patterns from correspondence regression analysis.

Drowsy driving-related crashes have been a key concern in transportation safety. In Louisiana, 14% (1,758 out of 12,512) of police-reported drowsy driving-related crashes during 2015-2019 resulted in ... This study used 5-years (2015-2019) of crash data and utilized the correspondence regression analysis method to identify the key collective associations of attributes in drowsy driving-related crashes... Several drowsy driving-related crash patterns were identified through crash clusters - afternoon fatigue crashes by middle-aged female drivers on urban multilane curves, crossover crashes by young dri... The findings of this study are expected to help researchers, planners, and policymakers in understanding and developing strategic mitigation measures to prevent drowsy driving....

Quantitative bias analysis in practice: review of software for regression with unmeasured confounding.

Failure to appropriately account for unmeasured confounding may lead to erroneous conclusions. Quantitative bias analysis (QBA) can be used to quantify the potential impact of unmeasured confounding o... We conducted a systematic review of the latest developments in QBA software published between 2011 and 2021. Our inclusion criteria were software that did not require adaption (i.e., code changes) bef... Our review identified 21 programs with [Formula: see text] created post 2016. All are implementations of a deterministic QBA with [Formula: see text] available in the free software R. There are progra... Software is now available to implement a QBA for a range of different analyses. However, the diversity of methods, even for the same analysis of interest, presents challenges to their widespread uptak...

Hospitalization costs of injury in elderly population in China: a quantile regression analysis.

Trauma in the elderly is gradually growing more prevalent as the aging population increases over time. The purpose of this study is to assess hospitalization costs of the elderly trauma population and... In a retrospective analysis, data on trauma patients over 65 who were admitted to the hospital for the first time due to trauma between January 2017 and March 2022 was collected from a tertiary compre... This study comprised 1707 trauma patients in total. Mean total hospitalization costs per patient were ¥20,741. Patients with transportation accidents incurred the highest expenditures among those with... Using quantile regression to identify factors associated with hospitalization costs could be helpful for addressing the burden of injury in the elderly population. Policymakers may find these findings...

Role of age as eligibility criterion for ECMO in patients with ARDS: meta-regression analysis.

Age as an eligibility criterion for V-V ECMO is widely debated and varies among healthcare institutions. We examined how age relates to mortality in patients undergoing V-V ECMO for ARDS.... Systematic review and meta-regression of clinical studies published between 2015 and June 2024. Studies involving at least 6 ARDS patients treated with V-V ECMO, with specific data on ICU and/or hospi... In non-COVID ARDS, the meta-regression of 173 studies with 56,257 participants showed a significant positive association between mean age and ICU/hospital mortality. In COVID-19 ARDS, a significant re... The relationship between age and ICU mortality is linear and shows no inflection point. Consequently, no age cut-off can be recommended for determining patient eligibility for V-V ECMO....