Titre : Triacylglycerol lipase

Triacylglycerol lipase : Questions médicales fréquentes

Termes MeSH sélectionnés :

Supervised Machine Learning
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Triacylglycerol lipase : Questions médicales les plus fréquentes", "headline": "Triacylglycerol lipase : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Triacylglycerol lipase : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-06-13", "dateModified": "2025-03-10", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Triacylglycerol lipase" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Carboxylic ester hydrolases", "url": "https://questionsmedicales.fr/mesh/D002265", "about": { "@type": "MedicalCondition", "name": "Carboxylic ester hydrolases", "code": { "@type": "MedicalCode", "code": "D002265", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D08.811.277.352.100" } } }, "about": { "@type": "MedicalCondition", "name": "Triacylglycerol lipase", "alternateName": "Lipase", "code": { "@type": "MedicalCode", "code": "D008049", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Luciana R B Gonçalves", "url": "https://questionsmedicales.fr/author/Luciana%20R%20B%20Gon%C3%A7alves", "affiliation": { "@type": "Organization", "name": "Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza 60455760, CE, Brazil." } }, { "@type": "Person", "name": "Roberto Fernandez-Lafuente", "url": "https://questionsmedicales.fr/author/Roberto%20Fernandez-Lafuente", "affiliation": { "@type": "Organization", "name": "Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, 28049 Madrid, Spain. rfl@icp.csic.es." } }, { "@type": "Person", "name": "Yonghua Wang", "url": "https://questionsmedicales.fr/author/Yonghua%20Wang", "affiliation": { "@type": "Organization", "name": "School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China. yonghw@scut.edu.cn." } }, { "@type": "Person", "name": "Rodolpho R C Monteiro", "url": "https://questionsmedicales.fr/author/Rodolpho%20R%20C%20Monteiro", "affiliation": { "@type": "Organization", "name": "Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Fortaleza, Brazil." } }, { "@type": "Person", "name": "Pierre B A Fechine", "url": "https://questionsmedicales.fr/author/Pierre%20B%20A%20Fechine", "affiliation": { "@type": "Organization", "name": "Group of Chemistry of Advanced Materials (GQMat) - Department of Analytical Chemistry and Physic-chemistry, Federal University of Ceará - UFC, Fortaleza, Brazil." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Comparison of machine learning models for predicting the risk of breast cancer-related lymphedema in Chinese women.", "datePublished": "2022-06-09", "url": "https://questionsmedicales.fr/article/36276882", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.apjon.2022.100101" } }, { "@type": "ScholarlyArticle", "name": "Optimization of Service Process in Emergency Department Using Discrete Event Simulation and Machine Learning Algorithm.", "datePublished": "2022-06-08", "url": "https://questionsmedicales.fr/article/35765608", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.22037/aaem.v10i1.1545" } }, { "@type": "ScholarlyArticle", "name": "Characterizing Risk of In-Hospital Mortality Following Subarachnoid Hemorrhage Using Machine Learning: A Retrospective Study.", "datePublished": "2022-06-08", "url": "https://questionsmedicales.fr/article/36034376", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3389/fsurg.2022.891984" } }, { "@type": "ScholarlyArticle", "name": "Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction.", "datePublished": "2022-06-07", "url": "https://questionsmedicales.fr/article/35702157", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1101/2022.06.06.22276062" } }, { "@type": "ScholarlyArticle", "name": "Multimodal classification of extremely preterm and term adolescents using the fusiform gyrus: A machine learning approach.", "datePublished": "2022-06-04", "url": "https://questionsmedicales.fr/article/35687994", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.nicl.2022.103078" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Enzymes et coenzymes", "item": "https://questionsmedicales.fr/mesh/D045762" }, { "@type": "ListItem", "position": 3, "name": "Enzymes", "item": "https://questionsmedicales.fr/mesh/D004798" }, { "@type": "ListItem", "position": 4, "name": "Hydrolases", "item": "https://questionsmedicales.fr/mesh/D006867" }, { "@type": "ListItem", "position": 5, "name": "Esterases", "item": "https://questionsmedicales.fr/mesh/D004950" }, { "@type": "ListItem", "position": 6, "name": "Carboxylic ester hydrolases", "item": "https://questionsmedicales.fr/mesh/D002265" }, { "@type": "ListItem", "position": 7, "name": "Triacylglycerol lipase", "item": "https://questionsmedicales.fr/mesh/D008049" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Triacylglycerol lipase - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Triacylglycerol lipase", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-14", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Triacylglycerol lipase", "description": "Comment diagnostiquer une déficience en lipase ?\nQuels tests sont utilisés pour évaluer la lipase ?\nQuels symptômes indiquent un problème de lipase ?\nLa lipase est-elle mesurée lors d'une pancréatite ?\nQuels autres marqueurs sont associés à la lipase ?", "url": "https://questionsmedicales.fr/mesh/D008049?mesh_terms=Supervised+Machine+Learning&page=1000#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Triacylglycerol lipase", "description": "Quels sont les symptômes d'une hyperlipidémie ?\nComment la déficience en lipase se manifeste-t-elle ?\nLa lipase affecte-t-elle le poids corporel ?\nQuels signes indiquent une inflammation pancréatique ?\nLes douleurs abdominales sont-elles liées à la lipase ?", "url": "https://questionsmedicales.fr/mesh/D008049?mesh_terms=Supervised+Machine+Learning&page=1000#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Triacylglycerol lipase", "description": "Comment prévenir les troubles liés à la lipase ?\nLes examens réguliers sont-ils nécessaires ?\nLe contrôle du poids aide-t-il la lipase ?\nLes habitudes alimentaires influencent-elles la lipase ?\nL'exercice régulier est-il bénéfique ?", "url": "https://questionsmedicales.fr/mesh/D008049?mesh_terms=Supervised+Machine+Learning&page=1000#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Triacylglycerol lipase", "description": "Comment traiter une déficience en lipase ?\nQuels médicaments peuvent affecter la lipase ?\nLa lipase peut-elle être ciblée par des thérapies ?\nQuels changements alimentaires aident la lipase ?\nLes enzymes pancréatiques sont-elles efficaces ?", "url": "https://questionsmedicales.fr/mesh/D008049?mesh_terms=Supervised+Machine+Learning&page=1000#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Triacylglycerol lipase", "description": "Quelles complications peuvent survenir avec une lipase élevée ?\nLa lipase affecte-t-elle la santé cardiovasculaire ?\nQuels risques sont associés à une déficience en lipase ?\nLes troubles lipidiques peuvent-ils causer des AVC ?\nUne lipase anormale peut-elle affecter le foie ?", "url": "https://questionsmedicales.fr/mesh/D008049?mesh_terms=Supervised+Machine+Learning&page=1000#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Triacylglycerol lipase", "description": "Quels facteurs augmentent le risque de troubles lipidiques ?\nL'hérédité joue-t-elle un rôle dans les troubles lipidiques ?\nLe tabagisme influence-t-il la lipase ?\nLe stress a-t-il un impact sur la lipase ?\nL'âge est-il un facteur de risque pour la lipase ?", "url": "https://questionsmedicales.fr/mesh/D008049?mesh_terms=Supervised+Machine+Learning&page=1000#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment diagnostiquer une déficience en lipase ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Des tests sanguins mesurant les niveaux de lipase peuvent indiquer une déficience." } }, { "@type": "Question", "name": "Quels tests sont utilisés pour évaluer la lipase ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Les tests de lipase sérique sont couramment utilisés pour évaluer la fonction pancréatique." } }, { "@type": "Question", "name": "Quels symptômes indiquent un problème de lipase ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Des douleurs abdominales, des nausées et des vomissements peuvent signaler un problème." } }, { "@type": "Question", "name": "La lipase est-elle mesurée lors d'une pancréatite ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les niveaux de lipase sont souvent élevés en cas de pancréatite aiguë." } }, { "@type": "Question", "name": "Quels autres marqueurs sont associés à la lipase ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "L'amylase est souvent mesurée en parallèle pour évaluer les troubles pancréatiques." } }, { "@type": "Question", "name": "Quels sont les symptômes d'une hyperlipidémie ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Les symptômes incluent des douleurs abdominales, des éruptions cutanées et une fatigue." } }, { "@type": "Question", "name": "Comment la déficience en lipase se manifeste-t-elle ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Elle peut entraîner des malabsorption des graisses, des diarrhées grasses et des carences nutritionnelles." } }, { "@type": "Question", "name": "La lipase affecte-t-elle le poids corporel ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Une déficience peut entraîner une perte de poids due à une mauvaise absorption des graisses." } }, { "@type": "Question", "name": "Quels signes indiquent une inflammation pancréatique ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Des douleurs abdominales sévères, des nausées et des vomissements sont des signes d'inflammation." } }, { "@type": "Question", "name": "Les douleurs abdominales sont-elles liées à la lipase ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des niveaux anormaux de lipase peuvent être associés à des douleurs abdominales." } }, { "@type": "Question", "name": "Comment prévenir les troubles liés à la lipase ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Maintenir une alimentation équilibrée et un mode de vie actif peut aider à prévenir les troubles." } }, { "@type": "Question", "name": "Les examens réguliers sont-ils nécessaires ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des examens réguliers peuvent aider à détecter précocement des anomalies lipidiques." } }, { "@type": "Question", "name": "Le contrôle du poids aide-t-il la lipase ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "Oui, maintenir un poids santé peut réduire le risque de troubles lipidiques." } }, { "@type": "Question", "name": "Les habitudes alimentaires influencent-elles la lipase ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "Oui, une alimentation riche en graisses saturées peut affecter les niveaux de lipase." } }, { "@type": "Question", "name": "L'exercice régulier est-il bénéfique ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Oui, l'exercice régulier aide à réguler le métabolisme lipidique et la lipase." } }, { "@type": "Question", "name": "Comment traiter une déficience en lipase ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Le traitement peut inclure des suppléments enzymatiques pour améliorer la digestion." } }, { "@type": "Question", "name": "Quels médicaments peuvent affecter la lipase ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Certains médicaments comme les diurétiques peuvent influencer les niveaux de lipase." } }, { "@type": "Question", "name": "La lipase peut-elle être ciblée par des thérapies ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "Des thérapies ciblées peuvent être développées pour traiter des troubles lipidiques spécifiques." } }, { "@type": "Question", "name": "Quels changements alimentaires aident la lipase ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "Une alimentation riche en fibres et faible en graisses saturées peut améliorer la santé lipidique." } }, { "@type": "Question", "name": "Les enzymes pancréatiques sont-elles efficaces ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Oui, elles aident à la digestion des graisses en cas de déficience en lipase." } }, { "@type": "Question", "name": "Quelles complications peuvent survenir avec une lipase élevée ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "Une lipase élevée peut indiquer une pancréatite, entraînant des complications graves." } }, { "@type": "Question", "name": "La lipase affecte-t-elle la santé cardiovasculaire ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des niveaux élevés de lipides peuvent augmenter le risque de maladies cardiovasculaires." } }, { "@type": "Question", "name": "Quels risques sont associés à une déficience en lipase ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "Une déficience peut entraîner des malnutritions et des carences en vitamines liposolubles." } }, { "@type": "Question", "name": "Les troubles lipidiques peuvent-ils causer des AVC ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des troubles lipidiques non traités peuvent augmenter le risque d'accidents vasculaires cérébraux." } }, { "@type": "Question", "name": "Une lipase anormale peut-elle affecter le foie ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des niveaux anormaux peuvent être liés à des maladies hépatiques comme la stéatose." } }, { "@type": "Question", "name": "Quels facteurs augmentent le risque de troubles lipidiques ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "L'obésité, le diabète et une alimentation riche en graisses saturées augmentent le risque." } }, { "@type": "Question", "name": "L'hérédité joue-t-elle un rôle dans les troubles lipidiques ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des antécédents familiaux de troubles lipidiques peuvent augmenter le risque." } }, { "@type": "Question", "name": "Le tabagisme influence-t-il la lipase ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le tabagisme peut affecter le métabolisme lipidique et les niveaux de lipase." } }, { "@type": "Question", "name": "Le stress a-t-il un impact sur la lipase ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le stress chronique peut influencer le métabolisme et les niveaux de lipase." } }, { "@type": "Question", "name": "L'âge est-il un facteur de risque pour la lipase ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le risque de troubles lipidiques augmente avec l'âge en raison de changements métaboliques." } } ] } ] }

Sources (10000 au total)

Comparison of machine learning models for predicting the risk of breast cancer-related lymphedema in Chinese women.

Predictive models for the occurrence of cancer symptoms by using machine learning (ML) algorithms could be used to aid clinical decision-making in order to enhance the quality of cancer care. This stu... This was a retrospective cohort study of consecutive cases that had been diagnosed with breast cancer, stages I-IV. Forty-eight variables were grouped into five feature sets. Five classification model... Of 370 eligible female participants, 91 had BCRL (24.6%). The mean age of this study sample was 49.89 (SD ​= ​7.45). All participants had had breast cancer surgery, and more than half of them had had ... This study found that in the ML training dataset, the multilayer perceptron model and the logistic regression model were the best discrimination models for predicting the outcome of BCRL, and the...

Optimization of Service Process in Emergency Department Using Discrete Event Simulation and Machine Learning Algorithm.

Emergency departments are operating with limited resources and high levels of unexpected requests. This study aimed to minimize patients' waiting time and the percentage of units' engagement to improv... A comprehensive combination method involving Discrete Event Simulation (DES), Artificial Neural Network (ANN) algorithm, and finally solving the model by use of Genetic Algorithm (GA) was used in this... According to the model optimization result, it was determined that the hospitalization unit, as well as the hospitalization units' doctors, were in an optimized condition, but the triage unit, as well... Using the service optimization method creates a significant improvement in patient's waiting time and stream at emergency departments, which is made possible through appropriate allocation of the huma...

Characterizing Risk of In-Hospital Mortality Following Subarachnoid Hemorrhage Using Machine Learning: A Retrospective Study.

Subarachnoid hemorrhage has a high rate of disability and mortality, and the ability to use existing disease severity scores to estimate the risk of adverse outcomes is limited. Collect relevant infor... Patient-level data were extracted from MIMIC-IV data. The primary outcome was in-hospital mortality. The models were trained and tested on a data set (ratio 70:30) including age and key past medical h... Of the 1,787 patients included in the mimic database, a total of 379 died during hospitalization. Recursive feature abstraction (RFE) selected 20 variables. After simplification, we determined 10 feat... ML approaches significantly enhance predictive discrimination for mortality following subarachnoid hemorrhage compared to existing illness severity scores and LR. The discriminative ability of these M...

Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction.

Data drift can negatively impact the performance of machine learning algorithms (MLAs) that were trained on historical data. As such, MLAs should be continuously monitored and tuned to overcome the sy... We devise a series of simulations that measure the effects of data drift in patients with sepsis. We simulate multiple scenarios in which data drift may occur, namely the change in the distribution of... Our results show that the properly retrained XGB models outperform the baseline models in all simulation scenarios, hence signifying the existence of data drift. In the major event scenario, the area ... Our simulations reveal that retraining periods of a couple of months or using several thousand patients are likely to be adequate to monitor machine learning models that predict sepsis. This indicates...

Multimodal classification of extremely preterm and term adolescents using the fusiform gyrus: A machine learning approach.

Extremely preterm birth has been associated with atypical visual and neural processing of faces, as well as differences in gray matter structure in visual processing areas relative to full-term peers.... Extremely preterm adolescents (n = 20) and full-term peers (n = 24) underwent structural and functional magnetic resonance imaging. Group differences in gray matter density, measured via voxel-based m... Group differences in two partially overlapping clusters emerged: one from the VBM analysis showing less density in the extremely preterm cohort and one from BOLD response to faces showing greater acti... Consistent with previous findings, we observed neural differences in extremely preterm youth in an area that plays an important role in face processing. Multimodal analyses revealed differences in str...

Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review.

Rehabilitation medicine is facing a new development phase thanks to a recent wave of rigorous clinical trials aimed at improving the scientific evidence of protocols. This phenomenon, combined with ne... We conducted a comprehensive search of five electronic databases using the Patient, Intervention, Comparison and Outcome (PICO) format. We extracted health conditions, population characteristics, outc... A total of 19 primary studies were included. The predictors most frequently used belonged to the areas of demographic characteristics and stroke assessment through clinical examination. Regarding the ... We identified several methodological limitations: small sample sizes, a limited number of external validation approaches, and high heterogeneity among input and output variables. Although these elemen...

A Hybrid Model Associating Population Pharmacokinetics with Machine Learning: A Case Study with Iohexol Clearance Estimation.

Maximum a posteriori Bayesian estimation (MAP-BE) based on a limited sampling strategy and a population pharmacokinetic model is frequently used to estimate pharmacokinetic parameters in individuals, ... The objective of this work was to investigate the use of a hybrid machine learning/population pharmacokinetic approach to improve individual iohexol clearance estimation.... The reference iohexol clearance values were derived from 500 simulated profiles (samples collected between 0.1 and 24.7 h) using a population pharmacokinetic model we recently developed in Monolix and... The MAP-BE limited sampling strategy estimated clearance was corrected by the machine learning predicted error leading to a decrease in root mean squared error by 29% and 24%, and in the percentage of... In conclusion, this hybrid algorithm represents a significant improvement in comparison to MAP-BE estimation alone....