Titre : Loi de Poisson

Loi de Poisson : Questions médicales fréquentes

Termes MeSH sélectionnés :

Diagnostic and Statistical Manual of Mental Disorders

Questions fréquentes et termes MeSH associés

Diagnostic 5

#1

Comment identifier une distribution de Poisson ?

On vérifie si les événements sont rares et indépendants, et on utilise des tests statistiques.
Distribution de Poisson Statistiques
#2

Quels outils statistiques sont utilisés ?

Les tests de chi carré et les tests de Poisson sont couramment utilisés pour l'analyse.
Tests statistiques Analyse de données
#3

Quand utiliser la loi de Poisson ?

Elle est utilisée pour modéliser des événements rares comme les accidents ou les maladies.
Événements rares Modélisation statistique
#4

Quels sont les critères d'application ?

Les événements doivent être indépendants et se produire à un taux constant dans le temps.
Indépendance Taux d'événements
#5

Comment vérifier l'adéquation du modèle ?

On compare les données observées avec les données attendues par le modèle de Poisson.
Modèle statistique Analyse de variance

Symptômes 5

#1

Quels symptômes modélise-t-on avec la loi de Poisson ?

On modélise des événements comme des cas de maladies ou des accidents dans un intervalle donné.
Symptômes Événements de santé
#2

La loi de Poisson peut-elle prédire des épidémies ?

Oui, elle peut estimer le nombre de cas d'une maladie dans un temps donné, comme une épidémie.
Épidémies Prévision
#3

Quels événements sont souvent analysés ?

Les événements comme les admissions à l'hôpital ou les infections nosocomiales sont analysés.
Admissions hospitalières Infections nosocomiales
#4

Peut-on modéliser des décès avec cette loi ?

Oui, la loi de Poisson est utilisée pour modéliser le nombre de décès dans une population sur une période.
Décès Démographie
#5

Quels types de maladies sont concernés ?

Des maladies infectieuses, des accidents et des maladies chroniques peuvent être modélisées.
Maladies infectieuses Accidents

Prévention 5

#1

Comment la loi de Poisson aide-t-elle à la prévention ?

Elle permet d'estimer le risque d'événements indésirables et d'orienter les stratégies de prévention.
Prévention Risque
#2

Peut-on prédire des épidémies avec cette loi ?

Oui, elle aide à prédire le nombre de cas d'épidémies et à planifier des interventions préventives.
Prédiction d'épidémies Interventions préventives
#3

Quels événements préventifs sont modélisés ?

On modélise des événements comme les vaccinations et les campagnes de sensibilisation.
Vaccination Sensibilisation
#4

Comment évaluer l'impact des campagnes ?

On utilise la loi de Poisson pour analyser le nombre de cas avant et après les campagnes de prévention.
Impact des campagnes Analyse comparative
#5

Quels facteurs influencent la prévention ?

Les facteurs comme le taux de vaccination et l'accès aux soins influencent les résultats préventifs.
Taux de vaccination Accès aux soins

Traitements 5

#1

Comment la loi de Poisson aide-t-elle en traitement ?

Elle permet d'évaluer l'efficacité des traitements en analysant le nombre d'événements indésirables.
Efficacité des traitements Événements indésirables
#2

Peut-on ajuster les traitements avec cette loi ?

Oui, les données de Poisson aident à ajuster les traitements en fonction des résultats observés.
Ajustement thérapeutique Résultats cliniques
#3

Comment évaluer les effets secondaires ?

On utilise la loi de Poisson pour modéliser le nombre d'effets secondaires dans des essais cliniques.
Effets secondaires Essais cliniques
#4

La loi de Poisson influence-t-elle la recherche ?

Oui, elle guide la recherche sur l'impact des traitements en analysant les événements rares.
Recherche médicale Impact des traitements
#5

Quels traitements sont souvent analysés ?

Les traitements pour les maladies infectieuses et les interventions chirurgicales sont souvent analysés.
Maladies infectieuses Interventions chirurgicales

Complications 5

#1

Quelles complications peuvent être modélisées ?

On peut modéliser des complications comme les infections post-opératoires ou les effets secondaires.
Complications Infections post-opératoires
#2

Comment la loi de Poisson aide-t-elle à comprendre les complications ?

Elle permet d'analyser la fréquence des complications et d'identifier des facteurs de risque.
Analyse de fréquence Facteurs de risque
#3

Peut-on prédire des complications avec cette loi ?

Oui, elle aide à prédire le nombre de complications dans des populations spécifiques après un traitement.
Prédiction Population spécifique
#4

Quels types de complications sont souvent étudiés ?

Les complications chirurgicales et les effets indésirables des médicaments sont souvent étudiés.
Complications chirurgicales Effets indésirables
#5

Comment réduire les complications ?

On utilise les données de Poisson pour identifier les risques et améliorer les protocoles de soins.
Réduction des risques Protocoles de soins

Facteurs de risque 5

#1

Quels facteurs influencent la loi de Poisson ?

Les facteurs comme l'âge, le sexe et les antécédents médicaux influencent les événements modélisés.
Facteurs de risque Antécédents médicaux
#2

Comment identifier les facteurs de risque ?

On analyse les données épidémiologiques pour identifier les facteurs associés à des événements rares.
Épidémiologie Analyse de données
#3

Les comportements influencent-ils les résultats ?

Oui, des comportements comme le tabagisme ou l'alimentation peuvent augmenter les risques d'événements.
Comportements de santé Tabagisme
#4

Quels facteurs environnementaux sont considérés ?

Des facteurs comme la pollution et l'accès aux soins de santé sont pris en compte dans l'analyse.
Pollution Accès aux soins
#5

Comment les facteurs de risque sont-ils utilisés ?

Ils sont utilisés pour orienter les politiques de santé publique et les stratégies de prévention.
Politiques de santé Stratégies de prévention
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Loi de Poisson : Questions médicales les plus fréquentes", "headline": "Loi de Poisson : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Loi de Poisson : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-04-05", "dateModified": "2025-03-31", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Loi de Poisson" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Lois statistiques", "url": "https://questionsmedicales.fr/mesh/D016008", "about": { "@type": "MedicalCondition", "name": "Lois statistiques", "code": { "@type": "MedicalCode", "code": "D016008", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "N06.850.520.830.994" } } }, "about": { "@type": "MedicalCondition", "name": "Loi de Poisson", "alternateName": "Poisson Distribution", "code": { "@type": "MedicalCode", "code": "D016012", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Cécile Kremer", "url": "https://questionsmedicales.fr/author/C%C3%A9cile%20Kremer", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Andrea Torneri", "url": "https://questionsmedicales.fr/author/Andrea%20Torneri", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Sien Boesmans", "url": "https://questionsmedicales.fr/author/Sien%20Boesmans", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Hanne Meuwissen", "url": "https://questionsmedicales.fr/author/Hanne%20Meuwissen", "affiliation": { "@type": "Organization", "name": "" } }, { "@type": "Person", "name": "Selina Verdonschot", "url": "https://questionsmedicales.fr/author/Selina%20Verdonschot", "affiliation": { "@type": "Organization", "name": "" } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Validity of the revised Diagnostic and Statistical Manual of Mental Disorders-5 cross-cutting symptom measure as implemented in community mental health settings.", "datePublished": "2023-10-14", "url": "https://questionsmedicales.fr/article/37844781", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.jad.2023.10.077" } }, { "@type": "ScholarlyArticle", "name": "Interrater reliability of criterion A of the alternative model for personality disorder (Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition-Section III): A meta-analysis.", "datePublished": "2023-05-25", "url": "https://questionsmedicales.fr/article/37227864", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1037/per0000631" } }, { "@type": "ScholarlyArticle", "name": "Item Response Theory Analyses of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) Criteria Adapted to Screen Use Disorder: Exploratory Survey.", "datePublished": "2022-07-27", "url": "https://questionsmedicales.fr/article/35896018", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.2196/31803" } }, { "@type": "ScholarlyArticle", "name": "Psychopathy and antisocial personality disorder in the fifth edition of the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders: An attempted replication of Wygant et al. (2016).", "datePublished": "2023-05-25", "url": "https://questionsmedicales.fr/article/37227862", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1037/per0000626" } }, { "@type": "ScholarlyArticle", "name": "Functional impairment, insight, and comparison between criteria for gaming disorder in the International Classification of Diseases, 11 Edition and internet gaming disorder in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition.", "datePublished": "2022-11-02", "url": "https://questionsmedicales.fr/article/36326855", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1556/2006.2022.00079" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Environnement et santé publique", "item": "https://questionsmedicales.fr/mesh/D004778" }, { "@type": "ListItem", "position": 3, "name": "Santé publique", "item": "https://questionsmedicales.fr/mesh/D011634" }, { "@type": "ListItem", "position": 4, "name": "Méthodes épidémiologiques", "item": "https://questionsmedicales.fr/mesh/D004812" }, { "@type": "ListItem", "position": 5, "name": "Statistiques comme sujet", "item": "https://questionsmedicales.fr/mesh/D013223" }, { "@type": "ListItem", "position": 6, "name": "Lois statistiques", "item": "https://questionsmedicales.fr/mesh/D016008" }, { "@type": "ListItem", "position": 7, "name": "Loi de Poisson", "item": "https://questionsmedicales.fr/mesh/D016012" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Loi de Poisson - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Loi de Poisson", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-10", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Loi de Poisson", "description": "Comment identifier une distribution de Poisson ?\nQuels outils statistiques sont utilisés ?\nQuand utiliser la loi de Poisson ?\nQuels sont les critères d'application ?\nComment vérifier l'adéquation du modèle ?", "url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Diagnostic+and+Statistical+Manual+of+Mental+Disorders#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Loi de Poisson", "description": "Quels symptômes modélise-t-on avec la loi de Poisson ?\nLa loi de Poisson peut-elle prédire des épidémies ?\nQuels événements sont souvent analysés ?\nPeut-on modéliser des décès avec cette loi ?\nQuels types de maladies sont concernés ?", "url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Diagnostic+and+Statistical+Manual+of+Mental+Disorders#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Loi de Poisson", "description": "Comment la loi de Poisson aide-t-elle à la prévention ?\nPeut-on prédire des épidémies avec cette loi ?\nQuels événements préventifs sont modélisés ?\nComment évaluer l'impact des campagnes ?\nQuels facteurs influencent la prévention ?", "url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Diagnostic+and+Statistical+Manual+of+Mental+Disorders#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Loi de Poisson", "description": "Comment la loi de Poisson aide-t-elle en traitement ?\nPeut-on ajuster les traitements avec cette loi ?\nComment évaluer les effets secondaires ?\nLa loi de Poisson influence-t-elle la recherche ?\nQuels traitements sont souvent analysés ?", "url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Diagnostic+and+Statistical+Manual+of+Mental+Disorders#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Loi de Poisson", "description": "Quelles complications peuvent être modélisées ?\nComment la loi de Poisson aide-t-elle à comprendre les complications ?\nPeut-on prédire des complications avec cette loi ?\nQuels types de complications sont souvent étudiés ?\nComment réduire les complications ?", "url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Diagnostic+and+Statistical+Manual+of+Mental+Disorders#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Loi de Poisson", "description": "Quels facteurs influencent la loi de Poisson ?\nComment identifier les facteurs de risque ?\nLes comportements influencent-ils les résultats ?\nQuels facteurs environnementaux sont considérés ?\nComment les facteurs de risque sont-ils utilisés ?", "url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Diagnostic+and+Statistical+Manual+of+Mental+Disorders#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment identifier une distribution de Poisson ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "On vérifie si les événements sont rares et indépendants, et on utilise des tests statistiques." } }, { "@type": "Question", "name": "Quels outils statistiques sont utilisés ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Les tests de chi carré et les tests de Poisson sont couramment utilisés pour l'analyse." } }, { "@type": "Question", "name": "Quand utiliser la loi de Poisson ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Elle est utilisée pour modéliser des événements rares comme les accidents ou les maladies." } }, { "@type": "Question", "name": "Quels sont les critères d'application ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Les événements doivent être indépendants et se produire à un taux constant dans le temps." } }, { "@type": "Question", "name": "Comment vérifier l'adéquation du modèle ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "On compare les données observées avec les données attendues par le modèle de Poisson." } }, { "@type": "Question", "name": "Quels symptômes modélise-t-on avec la loi de Poisson ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "On modélise des événements comme des cas de maladies ou des accidents dans un intervalle donné." } }, { "@type": "Question", "name": "La loi de Poisson peut-elle prédire des épidémies ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Oui, elle peut estimer le nombre de cas d'une maladie dans un temps donné, comme une épidémie." } }, { "@type": "Question", "name": "Quels événements sont souvent analysés ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Les événements comme les admissions à l'hôpital ou les infections nosocomiales sont analysés." } }, { "@type": "Question", "name": "Peut-on modéliser des décès avec cette loi ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, la loi de Poisson est utilisée pour modéliser le nombre de décès dans une population sur une période." } }, { "@type": "Question", "name": "Quels types de maladies sont concernés ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Des maladies infectieuses, des accidents et des maladies chroniques peuvent être modélisées." } }, { "@type": "Question", "name": "Comment la loi de Poisson aide-t-elle à la prévention ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Elle permet d'estimer le risque d'événements indésirables et d'orienter les stratégies de prévention." } }, { "@type": "Question", "name": "Peut-on prédire des épidémies avec cette loi ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "Oui, elle aide à prédire le nombre de cas d'épidémies et à planifier des interventions préventives." } }, { "@type": "Question", "name": "Quels événements préventifs sont modélisés ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "On modélise des événements comme les vaccinations et les campagnes de sensibilisation." } }, { "@type": "Question", "name": "Comment évaluer l'impact des campagnes ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "On utilise la loi de Poisson pour analyser le nombre de cas avant et après les campagnes de prévention." } }, { "@type": "Question", "name": "Quels facteurs influencent la prévention ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Les facteurs comme le taux de vaccination et l'accès aux soins influencent les résultats préventifs." } }, { "@type": "Question", "name": "Comment la loi de Poisson aide-t-elle en traitement ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Elle permet d'évaluer l'efficacité des traitements en analysant le nombre d'événements indésirables." } }, { "@type": "Question", "name": "Peut-on ajuster les traitements avec cette loi ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les données de Poisson aident à ajuster les traitements en fonction des résultats observés." } }, { "@type": "Question", "name": "Comment évaluer les effets secondaires ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "On utilise la loi de Poisson pour modéliser le nombre d'effets secondaires dans des essais cliniques." } }, { "@type": "Question", "name": "La loi de Poisson influence-t-elle la recherche ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "Oui, elle guide la recherche sur l'impact des traitements en analysant les événements rares." } }, { "@type": "Question", "name": "Quels traitements sont souvent analysés ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Les traitements pour les maladies infectieuses et les interventions chirurgicales sont souvent analysés." } }, { "@type": "Question", "name": "Quelles complications peuvent être modélisées ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "On peut modéliser des complications comme les infections post-opératoires ou les effets secondaires." } }, { "@type": "Question", "name": "Comment la loi de Poisson aide-t-elle à comprendre les complications ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "Elle permet d'analyser la fréquence des complications et d'identifier des facteurs de risque." } }, { "@type": "Question", "name": "Peut-on prédire des complications avec cette loi ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "Oui, elle aide à prédire le nombre de complications dans des populations spécifiques après un traitement." } }, { "@type": "Question", "name": "Quels types de complications sont souvent étudiés ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Les complications chirurgicales et les effets indésirables des médicaments sont souvent étudiés." } }, { "@type": "Question", "name": "Comment réduire les complications ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "On utilise les données de Poisson pour identifier les risques et améliorer les protocoles de soins." } }, { "@type": "Question", "name": "Quels facteurs influencent la loi de Poisson ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "Les facteurs comme l'âge, le sexe et les antécédents médicaux influencent les événements modélisés." } }, { "@type": "Question", "name": "Comment identifier les facteurs de risque ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "On analyse les données épidémiologiques pour identifier les facteurs associés à des événements rares." } }, { "@type": "Question", "name": "Les comportements influencent-ils les résultats ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des comportements comme le tabagisme ou l'alimentation peuvent augmenter les risques d'événements." } }, { "@type": "Question", "name": "Quels facteurs environnementaux sont considérés ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Des facteurs comme la pollution et l'accès aux soins de santé sont pris en compte dans l'analyse." } }, { "@type": "Question", "name": "Comment les facteurs de risque sont-ils utilisés ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Ils sont utilisés pour orienter les politiques de santé publique et les stratégies de prévention." } } ] } ] }
Dr Olivier Menir

Contenu validé par Dr Olivier Menir

Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale


Validation scientifique effectuée le 31/03/2025

Contenu vérifié selon les dernières recommandations médicales

Auteurs principaux

Cécile Kremer

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Andrea Torneri

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Sien Boesmans

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Hanne Meuwissen

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Selina Verdonschot

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Koen Vanden Driessche

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Christian L Althaus

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Christel Faes

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Niel Hens

2 publications dans cette catégorie

Publications dans "Loi de Poisson" :

Tong Kang

2 publications dans cette catégorie

Affiliations :
  • Department of Biostatistics, University of Florida, Gainesville, Florida, USA.

Somnath Datta

2 publications dans cette catégorie

Affiliations :
  • Department of Biostatistics, University of Florida, Gainesville, Florida, USA.

Muhammad Ahsan-Ul-Haq

2 publications dans cette catégorie

Affiliations :
  • College of Statistical and Actuarial Sciences, University of the Punjab, Lahore, Pakistan.

Takahiro Kawabe

2 publications dans cette catégorie

Affiliations :
  • Human Information Science Laboratories, NTT Communication Science Laboratories, Tokyo, Japan.
Publications dans "Loi de Poisson" :

Wan Tang

2 publications dans cette catégorie

Affiliations :
  • 4 Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA.
Publications dans "Loi de Poisson" :

Marcin Makowski

1 publication dans cette catégorie

Affiliations :
  • Faculty of Physics, Department of Mathematical Methods in Physics, University of Białystok, Ul. Ciołkowskiego 1L, 15-245 Białystok, Poland.
Publications dans "Loi de Poisson" :

Edward Wiktor Piotrowski

1 publication dans cette catégorie

Affiliations :
  • Faculty of Physics, Department of Mathematical Methods in Physics, University of Białystok, Ul. Ciołkowskiego 1L, 15-245 Białystok, Poland.
Publications dans "Loi de Poisson" :

H Papageorgiou

1 publication dans cette catégorie

Affiliations :
  • Department of Mathematics, National and Kapodistrian University of Athens, Athens, Greece.
Publications dans "Loi de Poisson" :

Maria Vardaki

1 publication dans cette catégorie

Affiliations :
  • School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece.
Publications dans "Loi de Poisson" :

Huiqing Gao

1 publication dans cette catégorie

Affiliations :
  • School of Mathematics and Statistic, Qinghai Normal University, Xining 810008, China.
Publications dans "Loi de Poisson" :

Zhanshou Chen

1 publication dans cette catégorie

Affiliations :
  • School of Mathematics and Statistic, Qinghai Normal University, Xining 810008, China.
  • The State Key Laboratory of Tibetan Intelligent Information Processing and Application, Xining 810008, China.
Publications dans "Loi de Poisson" :

Sources (10000 au total)

Validity of the revised Diagnostic and Statistical Manual of Mental Disorders-5 cross-cutting symptom measure as implemented in community mental health settings.

The purpose of this study was to validate the Diagnostic and Statistical Manual of Mental Disorders-5 (DSM-5) Cross-Cutting Symptom Measure (CCSM) as a screening tool for a wide variety of disorders w... Participants (N = 851) were referred for coordinated specialty care services (mean age = 20.26 years (SD = 2.97); 82.5 % Caucasian, 7.5 % African American, 0.7 % Native American, 0.7 % Pacific Islande... At optimal cut-score, specificity ranged from 57 to 77 % for depression, anxiety, substance use and psychosis domains; sensitivity ranged from 63 to 72 %. Scores for depression, anxiety, substance use... Criterion measures did not have inter-rater reliabilities as this is generally prohibitive in clinic settings.... The CCSM could provide a first step in screening for multiple disorders; however, it cannot replace structured interviews for making diagnoses related to these conditions....

Interrater reliability of criterion A of the alternative model for personality disorder (Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition-Section III): A meta-analysis.

The alternative model for personality disorder (AMPD) is currently included in Section III of the Diagnostic and Statistical Manual for Mental Disorders, Fifth Edition (DSM-5). This review sought to s...

Item Response Theory Analyses of Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) Criteria Adapted to Screen Use Disorder: Exploratory Survey.

Screen use is part of daily life worldwide and morbidity related to excess use of screens has been reported. Some use of screens in excess could indicate a screen use disorder (ScUD). An integrative a... Our goals were (1) to describe screen uses in a general population sample and (2) to test the unidimensionality, local independence, and psychometric properties of the 9 Diagnostic and Statistical Man... This cross-sectional survey in a French suburban city targeted adults and adolescents. A self-administered questionnaire covered the main types of screens used and their use for various activities in ... Among the 300 participants, 171 (57.0%) were female (mean age 27 years), 297 (99.0%) used screens, 134 (44.7%) reported at least one criterion (potential problem users), and 5 (1.7%) reported 5 or mor... We described screen uses in a French community sample and have shown that the adaptation of the DSM-5 IGD to "ScUD" has good psychometric validity and is discriminating, confirming our hypothesis. We ...

Functional impairment, insight, and comparison between criteria for gaming disorder in the International Classification of Diseases, 11 Edition and internet gaming disorder in Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition.

This study evaluated the consistency between the International Classification of Diseases, 11th Edition (ICD-11) for gaming disorder (ICD-11-GD) and Diagnostic and Statistical Manual of Mental Disorde... We recruited 60 participants with GD, 45 participants who engaged in hazardous gaming (HG), and 120 controls based on a diagnostic interview. Their operationalization of functional impairment and stag... We observed satisfactory consistency (kappa value = 0.80) with a diagnostic accuracy of 91.5% between the ICD-11-GD and DSM-5-IGD criteria. Furthermore, 16 participants with IGD in DSM-5 were determin... There is a good consistency between ICD-11-GD and DSM-5-IGD criteria. The ICD-11 criteria have a high threshold for diagnosing GD. HG criteria could compensate for this high threshold and identify ind...

Age-related Psychometric Dimensionality Using the Diagnostic and Statistical Manual of Mental Disorders, 5th Edition Opioid Use Disorder Diagnostic Criteria.

Age-related psychometric differences in Diagnostic and Statistical Manual of Mental Disorders, 5th Edition (DSM-5) opioid use disorder (OUD) diagnostic criteria have been hypothesized, but not been te... People who participated in the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions III and reported past 12-month nonmedical use of prescription opioids were included. YAs were 1... One in 5 people met the DSM-5 OUD diagnostic criteria for OUD within the past 12 months, with the most endorsed criteria being tolerance (17.96%). DIF was identified for 3 criteria, including (1) taki... These findings suggest that there may be age-related variations in the DSM-5 OUD diagnostic criteria's ability to detect latent OUD. Future research should identify contributing factors and the influe...

Epidemiology of insomnia disorder in older persons according to the Diagnostic and Statistical Manual of Mental Disorders: a systematic review and meta-analysis.

There is a scarcity of summarizing data on the epidemiology of insomnia in older persons, especially when diagnosed with international criteria. This study aimed to estimate the prevalence and correla... Through PubMed/MEDLINE, EMBASE, and Web of Science (WoS), we searched for relevant articles published before June 28, 2023. The risk of bias was weighed using the Joanna Briggs Institute's (JBI's) cri... We included 18,270 participants across 16 studies. The male/female ratio was 0.89 (12 studies), and the mean age varied from 65.9 to 83.1 years (8 studies). The pooled prevalence of insomnia was 19.6%... Nearly one in every five old individuals was considered to have insomnia disorder, which was associated with the gender and the existence of mental health and/or somatic conditions.... We registered the protocol in the International Prospective Register of Systematic Reviews (PROSPERO) with registration number: CRD42022344675....

Clinical Utility of Impact of Event Scale-Revised for Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition Posttraumatic Stress Disorder.

The Impact of Event Scale-Revised (IES-R) is a widely used self-report for assessing posttraumatic stress disorder (PTSD), originally aligned with Diagnostic and Statistical Manual of Mental Disorders... A total of 238 participants recruited from multiple psychiatric centers, including 67 patients with PTSD, 72 patients with psychiatric controls, and 99 healthy controls, were included in the study. Al... The IES-R demonstrated good internal consistency and a high correlation with the PCL-5. Through factor analysis, 5 distinct dimensions emerged within the IES-R: sleep disturbance, intrusion, hyperarou... These findings underscore the scale's concurrent validity with the DSM-5 PTSD criteria and its effectiveness as a screening tool. Implementing a cutoff score of 25 on the IES-R can enhance its utility...