On vérifie si les événements sont rares et indépendants, et on utilise des tests statistiques.
Distribution de PoissonStatistiques
#2
Quels outils statistiques sont utilisés ?
Les tests de chi carré et les tests de Poisson sont couramment utilisés pour l'analyse.
Tests statistiquesAnalyse de données
#3
Quand utiliser la loi de Poisson ?
Elle est utilisée pour modéliser des événements rares comme les accidents ou les maladies.
Événements raresModélisation statistique
#4
Quels sont les critères d'application ?
Les événements doivent être indépendants et se produire à un taux constant dans le temps.
IndépendanceTaux d'événements
#5
Comment vérifier l'adéquation du modèle ?
On compare les données observées avec les données attendues par le modèle de Poisson.
Modèle statistiqueAnalyse de variance
Symptômes
5
#1
Quels symptômes modélise-t-on avec la loi de Poisson ?
On modélise des événements comme des cas de maladies ou des accidents dans un intervalle donné.
SymptômesÉvénements de santé
#2
La loi de Poisson peut-elle prédire des épidémies ?
Oui, elle peut estimer le nombre de cas d'une maladie dans un temps donné, comme une épidémie.
ÉpidémiesPrévision
#3
Quels événements sont souvent analysés ?
Les événements comme les admissions à l'hôpital ou les infections nosocomiales sont analysés.
Admissions hospitalièresInfections nosocomiales
#4
Peut-on modéliser des décès avec cette loi ?
Oui, la loi de Poisson est utilisée pour modéliser le nombre de décès dans une population sur une période.
DécèsDémographie
#5
Quels types de maladies sont concernés ?
Des maladies infectieuses, des accidents et des maladies chroniques peuvent être modélisées.
Maladies infectieusesAccidents
Prévention
5
#1
Comment la loi de Poisson aide-t-elle à la prévention ?
Elle permet d'estimer le risque d'événements indésirables et d'orienter les stratégies de prévention.
PréventionRisque
#2
Peut-on prédire des épidémies avec cette loi ?
Oui, elle aide à prédire le nombre de cas d'épidémies et à planifier des interventions préventives.
Prédiction d'épidémiesInterventions préventives
#3
Quels événements préventifs sont modélisés ?
On modélise des événements comme les vaccinations et les campagnes de sensibilisation.
VaccinationSensibilisation
#4
Comment évaluer l'impact des campagnes ?
On utilise la loi de Poisson pour analyser le nombre de cas avant et après les campagnes de prévention.
Impact des campagnesAnalyse comparative
#5
Quels facteurs influencent la prévention ?
Les facteurs comme le taux de vaccination et l'accès aux soins influencent les résultats préventifs.
Taux de vaccinationAccès aux soins
Traitements
5
#1
Comment la loi de Poisson aide-t-elle en traitement ?
Elle permet d'évaluer l'efficacité des traitements en analysant le nombre d'événements indésirables.
Efficacité des traitementsÉvénements indésirables
#2
Peut-on ajuster les traitements avec cette loi ?
Oui, les données de Poisson aident à ajuster les traitements en fonction des résultats observés.
Ajustement thérapeutiqueRésultats cliniques
#3
Comment évaluer les effets secondaires ?
On utilise la loi de Poisson pour modéliser le nombre d'effets secondaires dans des essais cliniques.
Effets secondairesEssais cliniques
#4
La loi de Poisson influence-t-elle la recherche ?
Oui, elle guide la recherche sur l'impact des traitements en analysant les événements rares.
Recherche médicaleImpact des traitements
#5
Quels traitements sont souvent analysés ?
Les traitements pour les maladies infectieuses et les interventions chirurgicales sont souvent analysés.
Maladies infectieusesInterventions chirurgicales
Complications
5
#1
Quelles complications peuvent être modélisées ?
On peut modéliser des complications comme les infections post-opératoires ou les effets secondaires.
ComplicationsInfections post-opératoires
#2
Comment la loi de Poisson aide-t-elle à comprendre les complications ?
Elle permet d'analyser la fréquence des complications et d'identifier des facteurs de risque.
Analyse de fréquenceFacteurs de risque
#3
Peut-on prédire des complications avec cette loi ?
Oui, elle aide à prédire le nombre de complications dans des populations spécifiques après un traitement.
PrédictionPopulation spécifique
#4
Quels types de complications sont souvent étudiés ?
Les complications chirurgicales et les effets indésirables des médicaments sont souvent étudiés.
Complications chirurgicalesEffets indésirables
#5
Comment réduire les complications ?
On utilise les données de Poisson pour identifier les risques et améliorer les protocoles de soins.
Réduction des risquesProtocoles de soins
Facteurs de risque
5
#1
Quels facteurs influencent la loi de Poisson ?
Les facteurs comme l'âge, le sexe et les antécédents médicaux influencent les événements modélisés.
Facteurs de risqueAntécédents médicaux
#2
Comment identifier les facteurs de risque ?
On analyse les données épidémiologiques pour identifier les facteurs associés à des événements rares.
ÉpidémiologieAnalyse de données
#3
Les comportements influencent-ils les résultats ?
Oui, des comportements comme le tabagisme ou l'alimentation peuvent augmenter les risques d'événements.
Comportements de santéTabagisme
#4
Quels facteurs environnementaux sont considérés ?
Des facteurs comme la pollution et l'accès aux soins de santé sont pris en compte dans l'analyse.
PollutionAccès aux soins
#5
Comment les facteurs de risque sont-ils utilisés ?
Ils sont utilisés pour orienter les politiques de santé publique et les stratégies de prévention.
Politiques de santéStratégies de prévention
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Loi de Poisson : Questions médicales les plus fréquentes",
"headline": "Loi de Poisson : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Loi de Poisson : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-04-05",
"dateModified": "2025-03-31",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Loi de Poisson"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Lois statistiques",
"url": "https://questionsmedicales.fr/mesh/D016008",
"about": {
"@type": "MedicalCondition",
"name": "Lois statistiques",
"code": {
"@type": "MedicalCode",
"code": "D016008",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.830.994"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Loi de Poisson",
"alternateName": "Poisson Distribution",
"code": {
"@type": "MedicalCode",
"code": "D016012",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "Cécile Kremer",
"url": "https://questionsmedicales.fr/author/C%C3%A9cile%20Kremer",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Andrea Torneri",
"url": "https://questionsmedicales.fr/author/Andrea%20Torneri",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Sien Boesmans",
"url": "https://questionsmedicales.fr/author/Sien%20Boesmans",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Hanne Meuwissen",
"url": "https://questionsmedicales.fr/author/Hanne%20Meuwissen",
"affiliation": {
"@type": "Organization",
"name": ""
}
},
{
"@type": "Person",
"name": "Selina Verdonschot",
"url": "https://questionsmedicales.fr/author/Selina%20Verdonschot",
"affiliation": {
"@type": "Organization",
"name": ""
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Designing and implementing a research integrity promotion plan: Recommendations for research funders.",
"datePublished": "2022-08-19",
"url": "https://questionsmedicales.fr/article/35984842",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1371/journal.pbio.3001773"
}
},
{
"@type": "ScholarlyArticle",
"name": "Study Types in Orthopaedics Research: Is My Study Design Appropriate for the Research Question?",
"datePublished": "2022-09-06",
"url": "https://questionsmedicales.fr/article/36162926",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.arth.2022.05.028"
}
},
{
"@type": "ScholarlyArticle",
"name": "Value of implementation science and hybrid implementation research designs for nursing education research: A discussion paper.",
"datePublished": "2023-04-25",
"url": "https://questionsmedicales.fr/article/37119757",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1016/j.nepr.2023.103650"
}
},
{
"@type": "ScholarlyArticle",
"name": "Research Methods Used in Evidence-Based Design: An Analysis of Five Years of Research Articles From the",
"datePublished": "2022-11-24",
"url": "https://questionsmedicales.fr/article/36424761",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1177/19375867221125940"
}
},
{
"@type": "ScholarlyArticle",
"name": "The Relative Merits of Observational and Experimental Research: Four Key Principles for Optimising Observational Research Designs.",
"datePublished": "2022-11-03",
"url": "https://questionsmedicales.fr/article/36364910",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.3390/nu14214649"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Statistiques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D013223"
},
{
"@type": "ListItem",
"position": 6,
"name": "Lois statistiques",
"item": "https://questionsmedicales.fr/mesh/D016008"
},
{
"@type": "ListItem",
"position": 7,
"name": "Loi de Poisson",
"item": "https://questionsmedicales.fr/mesh/D016012"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Loi de Poisson - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Loi de Poisson",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-10",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Loi de Poisson",
"description": "Comment identifier une distribution de Poisson ?\nQuels outils statistiques sont utilisés ?\nQuand utiliser la loi de Poisson ?\nQuels sont les critères d'application ?\nComment vérifier l'adéquation du modèle ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Research+Design#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Loi de Poisson",
"description": "Quels symptômes modélise-t-on avec la loi de Poisson ?\nLa loi de Poisson peut-elle prédire des épidémies ?\nQuels événements sont souvent analysés ?\nPeut-on modéliser des décès avec cette loi ?\nQuels types de maladies sont concernés ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Research+Design#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Loi de Poisson",
"description": "Comment la loi de Poisson aide-t-elle à la prévention ?\nPeut-on prédire des épidémies avec cette loi ?\nQuels événements préventifs sont modélisés ?\nComment évaluer l'impact des campagnes ?\nQuels facteurs influencent la prévention ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Research+Design#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Loi de Poisson",
"description": "Comment la loi de Poisson aide-t-elle en traitement ?\nPeut-on ajuster les traitements avec cette loi ?\nComment évaluer les effets secondaires ?\nLa loi de Poisson influence-t-elle la recherche ?\nQuels traitements sont souvent analysés ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Research+Design#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Loi de Poisson",
"description": "Quelles complications peuvent être modélisées ?\nComment la loi de Poisson aide-t-elle à comprendre les complications ?\nPeut-on prédire des complications avec cette loi ?\nQuels types de complications sont souvent étudiés ?\nComment réduire les complications ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Research+Design#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Loi de Poisson",
"description": "Quels facteurs influencent la loi de Poisson ?\nComment identifier les facteurs de risque ?\nLes comportements influencent-ils les résultats ?\nQuels facteurs environnementaux sont considérés ?\nComment les facteurs de risque sont-ils utilisés ?",
"url": "https://questionsmedicales.fr/mesh/D016012?mesh_terms=Research+Design#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier une distribution de Poisson ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "On vérifie si les événements sont rares et indépendants, et on utilise des tests statistiques."
}
},
{
"@type": "Question",
"name": "Quels outils statistiques sont utilisés ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les tests de chi carré et les tests de Poisson sont couramment utilisés pour l'analyse."
}
},
{
"@type": "Question",
"name": "Quand utiliser la loi de Poisson ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle est utilisée pour modéliser des événements rares comme les accidents ou les maladies."
}
},
{
"@type": "Question",
"name": "Quels sont les critères d'application ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les événements doivent être indépendants et se produire à un taux constant dans le temps."
}
},
{
"@type": "Question",
"name": "Comment vérifier l'adéquation du modèle ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "On compare les données observées avec les données attendues par le modèle de Poisson."
}
},
{
"@type": "Question",
"name": "Quels symptômes modélise-t-on avec la loi de Poisson ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "On modélise des événements comme des cas de maladies ou des accidents dans un intervalle donné."
}
},
{
"@type": "Question",
"name": "La loi de Poisson peut-elle prédire des épidémies ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle peut estimer le nombre de cas d'une maladie dans un temps donné, comme une épidémie."
}
},
{
"@type": "Question",
"name": "Quels événements sont souvent analysés ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les événements comme les admissions à l'hôpital ou les infections nosocomiales sont analysés."
}
},
{
"@type": "Question",
"name": "Peut-on modéliser des décès avec cette loi ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, la loi de Poisson est utilisée pour modéliser le nombre de décès dans une population sur une période."
}
},
{
"@type": "Question",
"name": "Quels types de maladies sont concernés ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des maladies infectieuses, des accidents et des maladies chroniques peuvent être modélisées."
}
},
{
"@type": "Question",
"name": "Comment la loi de Poisson aide-t-elle à la prévention ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle permet d'estimer le risque d'événements indésirables et d'orienter les stratégies de prévention."
}
},
{
"@type": "Question",
"name": "Peut-on prédire des épidémies avec cette loi ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle aide à prédire le nombre de cas d'épidémies et à planifier des interventions préventives."
}
},
{
"@type": "Question",
"name": "Quels événements préventifs sont modélisés ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "On modélise des événements comme les vaccinations et les campagnes de sensibilisation."
}
},
{
"@type": "Question",
"name": "Comment évaluer l'impact des campagnes ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise la loi de Poisson pour analyser le nombre de cas avant et après les campagnes de prévention."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la prévention ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les facteurs comme le taux de vaccination et l'accès aux soins influencent les résultats préventifs."
}
},
{
"@type": "Question",
"name": "Comment la loi de Poisson aide-t-elle en traitement ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle permet d'évaluer l'efficacité des traitements en analysant le nombre d'événements indésirables."
}
},
{
"@type": "Question",
"name": "Peut-on ajuster les traitements avec cette loi ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, les données de Poisson aident à ajuster les traitements en fonction des résultats observés."
}
},
{
"@type": "Question",
"name": "Comment évaluer les effets secondaires ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise la loi de Poisson pour modéliser le nombre d'effets secondaires dans des essais cliniques."
}
},
{
"@type": "Question",
"name": "La loi de Poisson influence-t-elle la recherche ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle guide la recherche sur l'impact des traitements en analysant les événements rares."
}
},
{
"@type": "Question",
"name": "Quels traitements sont souvent analysés ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les traitements pour les maladies infectieuses et les interventions chirurgicales sont souvent analysés."
}
},
{
"@type": "Question",
"name": "Quelles complications peuvent être modélisées ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "On peut modéliser des complications comme les infections post-opératoires ou les effets secondaires."
}
},
{
"@type": "Question",
"name": "Comment la loi de Poisson aide-t-elle à comprendre les complications ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle permet d'analyser la fréquence des complications et d'identifier des facteurs de risque."
}
},
{
"@type": "Question",
"name": "Peut-on prédire des complications avec cette loi ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, elle aide à prédire le nombre de complications dans des populations spécifiques après un traitement."
}
},
{
"@type": "Question",
"name": "Quels types de complications sont souvent étudiés ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les complications chirurgicales et les effets indésirables des médicaments sont souvent étudiés."
}
},
{
"@type": "Question",
"name": "Comment réduire les complications ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise les données de Poisson pour identifier les risques et améliorer les protocoles de soins."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la loi de Poisson ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "Les facteurs comme l'âge, le sexe et les antécédents médicaux influencent les événements modélisés."
}
},
{
"@type": "Question",
"name": "Comment identifier les facteurs de risque ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "On analyse les données épidémiologiques pour identifier les facteurs associés à des événements rares."
}
},
{
"@type": "Question",
"name": "Les comportements influencent-ils les résultats ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Oui, des comportements comme le tabagisme ou l'alimentation peuvent augmenter les risques d'événements."
}
},
{
"@type": "Question",
"name": "Quels facteurs environnementaux sont considérés ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des facteurs comme la pollution et l'accès aux soins de santé sont pris en compte dans l'analyse."
}
},
{
"@type": "Question",
"name": "Comment les facteurs de risque sont-ils utilisés ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Ils sont utilisés pour orienter les politiques de santé publique et les stratégies de prévention."
}
}
]
}
]
}
Various stakeholders in science have put research integrity high on their agenda. Among them, research funders are prominently placed to foster research integrity by requiring that the organizations a...
When performing orthopaedic clinical research, alternative study designs can be more appropriate depending on the research question, availability of data, and feasibility. The most common observationa...
Nursing education research is complex and contextualized. The evaluation and impact of educational innovations on students, educators, and educational outcomes are influenced by the complexity of envi...
This paper aims to explore the value of implementation science theories, models, and frameworks and hybrid designs for interventional nursing education research and illustrate how these can be used in...
A brief overview of implementation science, the various types of theories, models and frameworks and Hybrid designs are provided. Illustrative examples demonstrating the incorporation of these methodo...
A brief overview of implementation and its key concepts namely context, implementation strategies, fidelity, outcomes, adaptation, and sustainability is provided. Three types of hybrid designs are dis...
The implications of implementation science for nursing education research are: a) Accelerating uptake of innovations to improve educational outcomes, b) targeting systematic change in individual and o...
Incorporating implementation science in nursing education research can optimize the uptake of educational innovations in practice in a sustainable manner. Nurse educators should equip themselves with ...
This study aims to analyze research methodologies from 157 research articles published in this journal in the last five years (2016-2020)....
Health environments research is comprised of research covering many topics and from various disciplines worldwide. No systematic study exists to uncover themes in evidence-based design (EBD) research ...
Case study research was used to analyze 157 articles published in the...
Findings are reported on categories commonly found in empirical research articles: (i) key words, (ii) disciplines from authors, (iii) settings studied, (iv) populations studied or sampled, (v) resear...
The analyses highlighted the research methods most frequently used in health environments research. Findings revealed several inconsistencies across articles on key words and the framing of research m...
The main barrier to the publication of observational research is a perceived inferiority to randomised designs with regard to the reliability of their conclusions. This commentary addresses this issue...
Hand surgeons are constantly faced with evaluation of new evidence to identify best practices in clinical care. However, even the most rigorous study designs have limitations due to biases, generaliza...
Health policy impacts all aspects of the authors' field. Research on this topic informs future policy direction and serves as an impactful means to advocate for their patients. The present work aims t...
Exercise as a subset of physical activity is a cornerstone in the management of multiple sclerosis (MS) based on its pleiotropic effects, but continued progression of the field requires better future ...
This paper outlines the work of the 'Study design and methodology' group of the MoXFo (moving exercise research forward) initiative, and addresses critical aspects and future directions when defining ...
The work is based on the formation of an international expert panel formed within the MoXFo initiative. We provide a structured and concise synthesis of exercise-specific MS research challenges and co...
Challenges and considerations are presented using the Patient population, Intervention, Comparator, Outcomes, Timing, Setting (PICOTS) framework, thereby forming a new and specific MS exercise PICOTS ...
We propose that researchers should carefully consider and align all elements of this MS exercise PICOTS framework when developing future research questions and study designs, ultimately improving the ...
Engaging with patients when designing a clinical or research project is beneficial; feedback from the intended audience provides invaluable insight form the patients' perspective. Working with patient...
Patients were included in the PREHABS study from inception to completion. The Theory of Change methodology was used to provide a framework to implement patient feedback to refine the study interventio...
In total, 69 patients engaged with the PREHABS project. Two patients were recruited as co-applicants on the grant and were members on the Trial Management Group. Six patients attended the pre applicat...
It is practicable and beneficial to include patients at all stages of designing and delivering a research study. Patient feedback can help refine the study interventions to allow for maximum acceptanc...
Including patients in the design of radiotherapy research studies can provide invaluable insight that can support the selection and delivery of interventions that are acceptable to the patient cohort....
Evidence-based medicine and evidence hierarchies have been widely adopted and have strongly influenced decision making across many fields, including clinical aphasiology. However, questions remain abo...
This article builds on ideas about scientific approaches and evidence originally shared by Elman (1995, 1998, 2006). This article reviews the history of evidence hierarchies and argues that improving ...
Concepts from a wide variety of fields including philosophy of science, research design and methodology, and precision medicine are brought together in an attempt to focus research on the scientific u...
It is hoped that by incorporating diverse research designs, methods, and perspectives, clinical aphasiologists will become better able to provide effective, personalized treatments, ensuring that each...