Comment identifier un modèle économétrique approprié ?
Il faut analyser la nature des données et les relations entre les variables.
Modèles économétriquesAnalyse de données
#2
Quels tests sont utilisés pour valider un modèle ?
Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification.
Tests statistiquesValidité du modèle
#3
Qu'est-ce qu'un modèle de régression ?
C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes.
RégressionAnalyse de régression
#4
Comment évaluer la performance d'un modèle ?
On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher.
Évaluation de modèleR²
#5
Qu'est-ce qu'un modèle à variables instrumentales ?
C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes.
Variables instrumentalesEndogénéité
Symptômes
5
#1
Quels sont les signes d'un modèle mal spécifié ?
Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires.
Modèle mal spécifiéRésidus
#2
Comment détecter l'hétéroscédasticité ?
En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus.
HétéroscédasticitéTests de Breusch-Pagan
#3
Quels effets peut avoir la multicolinéarité ?
Elle peut rendre les estimations des coefficients instables et difficiles à interpréter.
MulticolinéaritéEstimation des coefficients
#4
Qu'est-ce qu'un biais d'échantillonnage ?
C'est une erreur systématique due à un échantillon non représentatif de la population.
Biais d'échantillonnageÉchantillonnage
#5
Quels sont les signes d'une autocorrélation ?
Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson.
AutocorrélationTest de Durbin-Watson
Prévention
5
#1
Comment éviter les biais dans les modèles ?
En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation.
BiaisValidation de modèle
#2
Quelles pratiques pour une bonne collecte de données ?
Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données.
Collecte de donnéesQualité des données
#3
Comment choisir les bonnes variables ?
En se basant sur la théorie, des études antérieures et des tests de significativité.
Sélection de variablesSignificativité
#4
Quelles sont les bonnes pratiques de modélisation ?
Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles.
Pratiques de modélisationDiagnostics
#5
Comment éviter le surajustement ?
En utilisant des techniques de validation croisée et en limitant la complexité du modèle.
SurajustementValidation croisée
Traitements
5
#1
Comment corriger l'hétéroscédasticité ?
En utilisant des transformations de données ou des modèles de régression robustes.
HétéroscédasticitéRégression robuste
#2
Quelles méthodes pour traiter la multicolinéarité ?
On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales.
MulticolinéaritéAnalyse en composantes principales
#3
Comment améliorer un modèle économétrique ?
En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires.
Amélioration de modèleModèles non linéaires
#4
Qu'est-ce que la régularisation ?
C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients.
RégularisationSurajustement
#5
Comment utiliser des modèles de séries temporelles ?
Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage.
Séries temporellesPrévision
Complications
5
#1
Quelles sont les conséquences d'un modèle mal spécifié ?
Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats.
Modèle mal spécifiéPrévisions inexactes
#2
Quels risques d'une autocorrélation non traitée ?
Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables.
AutocorrélationEstimation biaisée
#3
Comment la multicolinéarité affecte-t-elle les résultats ?
Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante.
MulticolinéaritéImpact des variables
#4
Quelles erreurs peuvent survenir dans l'interprétation des résultats ?
Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées.
Interprétation des résultatsErreurs d'interprétation
#5
Quels effets d'un échantillonnage biaisé ?
Il peut fausser les résultats et mener à des recommandations inappropriées.
Échantillonnage biaiséRecommandations
Facteurs de risque
5
#1
Quels facteurs influencent la sélection des variables ?
La théorie économique, la disponibilité des données et les objectifs de recherche.
Sélection de variablesThéorie économique
#2
Comment la taille de l'échantillon affecte-t-elle les résultats ?
Un échantillon trop petit peut entraîner des estimations instables et des biais.
Taille de l'échantillonEstimations instables
#3
Quels sont les risques d'une mauvaise collecte de données ?
Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle.
Collecte de donnéesValidité du modèle
#4
Comment les variables omises affectent-elles le modèle ?
Elles peuvent introduire un biais et fausser les relations estimées entre les variables.
Variables omisesBiais
#5
Quels sont les impacts d'une mauvaise spécification du modèle ?
Des prévisions erronées et des décisions basées sur des analyses incorrectes.
Mauvaise spécificationPrévisions erronées
{
"@context": "https://schema.org",
"@graph": [
{
"@type": "MedicalWebPage",
"name": "Modèles économétriques : Questions médicales les plus fréquentes",
"headline": "Modèles économétriques : Comprendre les symptômes, diagnostics et traitements",
"description": "Guide complet et accessible sur les Modèles économétriques : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.",
"datePublished": "2024-05-22",
"dateModified": "2025-02-16",
"inLanguage": "fr",
"medicalAudience": [
{
"@type": "MedicalAudience",
"name": "Grand public",
"audienceType": "Patient",
"healthCondition": {
"@type": "MedicalCondition",
"name": "Modèles économétriques"
},
"suggestedMinAge": 18,
"suggestedGender": "unisex"
},
{
"@type": "MedicalAudience",
"name": "Médecins",
"audienceType": "Physician",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "France"
}
},
{
"@type": "MedicalAudience",
"name": "Chercheurs",
"audienceType": "Researcher",
"geographicArea": {
"@type": "AdministrativeArea",
"name": "International"
}
}
],
"reviewedBy": {
"@type": "Person",
"name": "Dr Olivier Menir",
"jobTitle": "Expert en Médecine",
"description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale",
"url": "/static/pages/docteur-olivier-menir.html",
"alumniOf": {
"@type": "EducationalOrganization",
"name": "Université Paris Descartes"
}
},
"isPartOf": {
"@type": "MedicalWebPage",
"name": "Modèles économiques",
"url": "https://questionsmedicales.fr/mesh/D018803",
"about": {
"@type": "MedicalCondition",
"name": "Modèles économiques",
"code": {
"@type": "MedicalCode",
"code": "D018803",
"codingSystem": "MeSH"
},
"identifier": {
"@type": "PropertyValue",
"propertyID": "MeSH Tree",
"value": "N06.850.520.830.500.600"
}
}
},
"about": {
"@type": "MedicalCondition",
"name": "Modèles économétriques",
"alternateName": "Models, Econometric",
"code": {
"@type": "MedicalCode",
"code": "D017059",
"codingSystem": "MeSH"
}
},
"author": [
{
"@type": "Person",
"name": "James Heckman",
"url": "https://questionsmedicales.fr/author/James%20Heckman",
"affiliation": {
"@type": "Organization",
"name": "The University of Chicago, Department of Economics, 1126 E. 59 St., Chicago, IL 60637."
}
},
{
"@type": "Person",
"name": "Rodrigo Pinto",
"url": "https://questionsmedicales.fr/author/Rodrigo%20Pinto",
"affiliation": {
"@type": "Organization",
"name": "University of California at Los Angeles, Department of Economics, 315 Portola Plaza, Room 8385, Los Angeles, CA 90095."
}
},
{
"@type": "Person",
"name": "Tamás Krisztin",
"url": "https://questionsmedicales.fr/author/Tam%C3%A1s%20Krisztin",
"affiliation": {
"@type": "Organization",
"name": "International Institute for Applied Systems Analysis (IIASA) Laxenburg Austria."
}
},
{
"@type": "Person",
"name": "Philipp Piribauer",
"url": "https://questionsmedicales.fr/author/Philipp%20Piribauer",
"affiliation": {
"@type": "Organization",
"name": "Austrian Institute of Economic Research (WIFO) Vienna Austria."
}
},
{
"@type": "Person",
"name": "Gagan Deep Sharma",
"url": "https://questionsmedicales.fr/author/Gagan%20Deep%20Sharma",
"affiliation": {
"@type": "Organization",
"name": "University School of Management Studies, Guru Gobind Singh Indraprastha University, New Delhi-110078, India."
}
}
],
"citation": [
{
"@type": "ScholarlyArticle",
"name": "Cosmetic patent and female invention.",
"datePublished": "2024-08-08",
"url": "https://questionsmedicales.fr/article/39116107",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1371/journal.pone.0305238"
}
},
{
"@type": "ScholarlyArticle",
"name": "Tradition-invention dichotomy and optimization in the field of science.",
"datePublished": "2022-11-10",
"url": "https://questionsmedicales.fr/article/36353877",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1017/S0140525X22001236"
}
},
{
"@type": "ScholarlyArticle",
"name": "Magnetic resonance elastography: from invention to standard of care.",
"datePublished": "2022-07-19",
"url": "https://questionsmedicales.fr/article/35852570",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1007/s00261-022-03597-z"
}
},
{
"@type": "ScholarlyArticle",
"name": "The distal radio ulnar joint: a journey of discovery and invention of the Aptis prosthesis.",
"datePublished": "2022-12-15",
"url": "https://questionsmedicales.fr/article/36524268",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1177/17531934221142169"
}
},
{
"@type": "ScholarlyArticle",
"name": "Creativity of Creativity Researchers: Invention of Problems and Experimental Objects to Study Thinking.",
"datePublished": "2022-06-25",
"url": "https://questionsmedicales.fr/article/35751737",
"identifier": {
"@type": "PropertyValue",
"propertyID": "DOI",
"value": "10.1007/s12124-022-09713-4"
}
}
],
"breadcrumb": {
"@type": "BreadcrumbList",
"itemListElement": [
{
"@type": "ListItem",
"position": 1,
"name": "questionsmedicales.fr",
"item": "https://questionsmedicales.fr"
},
{
"@type": "ListItem",
"position": 2,
"name": "Environnement et santé publique",
"item": "https://questionsmedicales.fr/mesh/D004778"
},
{
"@type": "ListItem",
"position": 3,
"name": "Santé publique",
"item": "https://questionsmedicales.fr/mesh/D011634"
},
{
"@type": "ListItem",
"position": 4,
"name": "Méthodes épidémiologiques",
"item": "https://questionsmedicales.fr/mesh/D004812"
},
{
"@type": "ListItem",
"position": 5,
"name": "Statistiques comme sujet",
"item": "https://questionsmedicales.fr/mesh/D013223"
},
{
"@type": "ListItem",
"position": 6,
"name": "Modèles statistiques",
"item": "https://questionsmedicales.fr/mesh/D015233"
},
{
"@type": "ListItem",
"position": 7,
"name": "Modèles économiques",
"item": "https://questionsmedicales.fr/mesh/D018803"
},
{
"@type": "ListItem",
"position": 8,
"name": "Modèles économétriques",
"item": "https://questionsmedicales.fr/mesh/D017059"
}
]
}
},
{
"@type": "MedicalWebPage",
"name": "Article complet : Modèles économétriques - Questions et réponses",
"headline": "Questions et réponses médicales fréquentes sur Modèles économétriques",
"description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.",
"datePublished": "2025-05-14",
"inLanguage": "fr",
"hasPart": [
{
"@type": "MedicalWebPage",
"name": "Diagnostic",
"headline": "Diagnostic sur Modèles économétriques",
"description": "Comment identifier un modèle économétrique approprié ?\nQuels tests sont utilisés pour valider un modèle ?\nQu'est-ce qu'un modèle de régression ?\nComment évaluer la performance d'un modèle ?\nQu'est-ce qu'un modèle à variables instrumentales ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Inventions#section-diagnostic"
},
{
"@type": "MedicalWebPage",
"name": "Symptômes",
"headline": "Symptômes sur Modèles économétriques",
"description": "Quels sont les signes d'un modèle mal spécifié ?\nComment détecter l'hétéroscédasticité ?\nQuels effets peut avoir la multicolinéarité ?\nQu'est-ce qu'un biais d'échantillonnage ?\nQuels sont les signes d'une autocorrélation ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Inventions#section-symptômes"
},
{
"@type": "MedicalWebPage",
"name": "Prévention",
"headline": "Prévention sur Modèles économétriques",
"description": "Comment éviter les biais dans les modèles ?\nQuelles pratiques pour une bonne collecte de données ?\nComment choisir les bonnes variables ?\nQuelles sont les bonnes pratiques de modélisation ?\nComment éviter le surajustement ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Inventions#section-prévention"
},
{
"@type": "MedicalWebPage",
"name": "Traitements",
"headline": "Traitements sur Modèles économétriques",
"description": "Comment corriger l'hétéroscédasticité ?\nQuelles méthodes pour traiter la multicolinéarité ?\nComment améliorer un modèle économétrique ?\nQu'est-ce que la régularisation ?\nComment utiliser des modèles de séries temporelles ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Inventions#section-traitements"
},
{
"@type": "MedicalWebPage",
"name": "Complications",
"headline": "Complications sur Modèles économétriques",
"description": "Quelles sont les conséquences d'un modèle mal spécifié ?\nQuels risques d'une autocorrélation non traitée ?\nComment la multicolinéarité affecte-t-elle les résultats ?\nQuelles erreurs peuvent survenir dans l'interprétation des résultats ?\nQuels effets d'un échantillonnage biaisé ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Inventions#section-complications"
},
{
"@type": "MedicalWebPage",
"name": "Facteurs de risque",
"headline": "Facteurs de risque sur Modèles économétriques",
"description": "Quels facteurs influencent la sélection des variables ?\nComment la taille de l'échantillon affecte-t-elle les résultats ?\nQuels sont les risques d'une mauvaise collecte de données ?\nComment les variables omises affectent-elles le modèle ?\nQuels sont les impacts d'une mauvaise spécification du modèle ?",
"url": "https://questionsmedicales.fr/mesh/D017059?mesh_terms=Inventions#section-facteurs de risque"
}
]
},
{
"@type": "FAQPage",
"mainEntity": [
{
"@type": "Question",
"name": "Comment identifier un modèle économétrique approprié ?",
"position": 1,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il faut analyser la nature des données et les relations entre les variables."
}
},
{
"@type": "Question",
"name": "Quels tests sont utilisés pour valider un modèle ?",
"position": 2,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des tests comme le test de normalité, le test de multicolinéarité et le test de spécification."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle de régression ?",
"position": 3,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle qui établit une relation entre une variable dépendante et une ou plusieurs variables indépendantes."
}
},
{
"@type": "Question",
"name": "Comment évaluer la performance d'un modèle ?",
"position": 4,
"acceptedAnswer": {
"@type": "Answer",
"text": "On utilise des indicateurs comme le R², l'erreur quadratique moyenne et le test de Fisher."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un modèle à variables instrumentales ?",
"position": 5,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est un modèle utilisé pour corriger les biais d'endogénéité en utilisant des variables externes."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'un modèle mal spécifié ?",
"position": 6,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus non aléatoires, des valeurs aberrantes et des relations non linéaires."
}
},
{
"@type": "Question",
"name": "Comment détecter l'hétéroscédasticité ?",
"position": 7,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des tests comme le test de Breusch-Pagan ou en observant les résidus."
}
},
{
"@type": "Question",
"name": "Quels effets peut avoir la multicolinéarité ?",
"position": 8,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut rendre les estimations des coefficients instables et difficiles à interpréter."
}
},
{
"@type": "Question",
"name": "Qu'est-ce qu'un biais d'échantillonnage ?",
"position": 9,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une erreur systématique due à un échantillon non représentatif de la population."
}
},
{
"@type": "Question",
"name": "Quels sont les signes d'une autocorrélation ?",
"position": 10,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des résidus corrélés dans le temps, souvent détectés par le test de Durbin-Watson."
}
},
{
"@type": "Question",
"name": "Comment éviter les biais dans les modèles ?",
"position": 11,
"acceptedAnswer": {
"@type": "Answer",
"text": "En s'assurant que l'échantillon est représentatif et en utilisant des méthodes de validation."
}
},
{
"@type": "Question",
"name": "Quelles pratiques pour une bonne collecte de données ?",
"position": 12,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des protocoles standardisés et s'assurer de la qualité et de la fiabilité des données."
}
},
{
"@type": "Question",
"name": "Comment choisir les bonnes variables ?",
"position": 13,
"acceptedAnswer": {
"@type": "Answer",
"text": "En se basant sur la théorie, des études antérieures et des tests de significativité."
}
},
{
"@type": "Question",
"name": "Quelles sont les bonnes pratiques de modélisation ?",
"position": 14,
"acceptedAnswer": {
"@type": "Answer",
"text": "Utiliser des diagnostics appropriés, tester les hypothèses et valider le modèle sur des données nouvelles."
}
},
{
"@type": "Question",
"name": "Comment éviter le surajustement ?",
"position": 15,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des techniques de validation croisée et en limitant la complexité du modèle."
}
},
{
"@type": "Question",
"name": "Comment corriger l'hétéroscédasticité ?",
"position": 16,
"acceptedAnswer": {
"@type": "Answer",
"text": "En utilisant des transformations de données ou des modèles de régression robustes."
}
},
{
"@type": "Question",
"name": "Quelles méthodes pour traiter la multicolinéarité ?",
"position": 17,
"acceptedAnswer": {
"@type": "Answer",
"text": "On peut utiliser la sélection de variables, la régularisation ou l'analyse en composantes principales."
}
},
{
"@type": "Question",
"name": "Comment améliorer un modèle économétrique ?",
"position": 18,
"acceptedAnswer": {
"@type": "Answer",
"text": "En ajoutant des variables pertinentes, en transformant les données ou en utilisant des modèles non linéaires."
}
},
{
"@type": "Question",
"name": "Qu'est-ce que la régularisation ?",
"position": 19,
"acceptedAnswer": {
"@type": "Answer",
"text": "C'est une technique pour prévenir le surajustement en ajoutant une pénalité aux coefficients."
}
},
{
"@type": "Question",
"name": "Comment utiliser des modèles de séries temporelles ?",
"position": 20,
"acceptedAnswer": {
"@type": "Answer",
"text": "Pour analyser des données chronologiques et prévoir des tendances futures à l'aide de lissage."
}
},
{
"@type": "Question",
"name": "Quelles sont les conséquences d'un modèle mal spécifié ?",
"position": 21,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions inexactes, des décisions erronées et une mauvaise interprétation des résultats."
}
},
{
"@type": "Question",
"name": "Quels risques d'une autocorrélation non traitée ?",
"position": 22,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle peut conduire à des estimations biaisées et à des tests statistiques non fiables."
}
},
{
"@type": "Question",
"name": "Comment la multicolinéarité affecte-t-elle les résultats ?",
"position": 23,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elle rend difficile l'évaluation de l'impact individuel des variables sur la variable dépendante."
}
},
{
"@type": "Question",
"name": "Quelles erreurs peuvent survenir dans l'interprétation des résultats ?",
"position": 24,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des conclusions hâtives, des généralisations inappropriées et des politiques mal orientées."
}
},
{
"@type": "Question",
"name": "Quels effets d'un échantillonnage biaisé ?",
"position": 25,
"acceptedAnswer": {
"@type": "Answer",
"text": "Il peut fausser les résultats et mener à des recommandations inappropriées."
}
},
{
"@type": "Question",
"name": "Quels facteurs influencent la sélection des variables ?",
"position": 26,
"acceptedAnswer": {
"@type": "Answer",
"text": "La théorie économique, la disponibilité des données et les objectifs de recherche."
}
},
{
"@type": "Question",
"name": "Comment la taille de l'échantillon affecte-t-elle les résultats ?",
"position": 27,
"acceptedAnswer": {
"@type": "Answer",
"text": "Un échantillon trop petit peut entraîner des estimations instables et des biais."
}
},
{
"@type": "Question",
"name": "Quels sont les risques d'une mauvaise collecte de données ?",
"position": 28,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des données inexactes peuvent fausser les résultats et compromettre la validité du modèle."
}
},
{
"@type": "Question",
"name": "Comment les variables omises affectent-elles le modèle ?",
"position": 29,
"acceptedAnswer": {
"@type": "Answer",
"text": "Elles peuvent introduire un biais et fausser les relations estimées entre les variables."
}
},
{
"@type": "Question",
"name": "Quels sont les impacts d'une mauvaise spécification du modèle ?",
"position": 30,
"acceptedAnswer": {
"@type": "Answer",
"text": "Des prévisions erronées et des décisions basées sur des analyses incorrectes."
}
}
]
}
]
}
Majority customers of cosmetics are female. Would this imply a high proportion of inventors of cosmetics technology is female? Would the inventor's gender be related to the characteristics and quality...
The central idea of the bifocal stance theory (BST) by Jagiello et al. has substantial relevance to scientific research. Both tradition-following and exploration-innovation are important in science an...
In 1995, a vivid image of diffracting waves in red and blue was published on the cover of the journal SCIENCE. An article in that issue described a new imaging technology called magnetic resonance ela...
This article describes the journey the authors took in discovering a new distal radioulnar joint prosthesis. The beginning deals with the problems we can potentially create for patients when we blindl...
Invention of problem situations and experimental objects to study others' thinking is a special kind of creativity worthy of scientific interest. The objects are considered in terms of Latour's actor ...
The purpose of this study was to establish a system for measuring breast underling pressure, evaluate the degree of sustained underling pressure, and verify basic data on the breast lifting distance t...
Present neurosurgical simulators are not portable....
To maximize portability of a virtual surgical simulator by providing online learning and to validate a unique psychometric method ("audiovisual capture") to provide tactile information without force f...
An online interactive neurosurgical simulator of a posterior petrosectomy was developed. The difference in the hardness of compact vs cancellous bone was presented with audiovisual effects as inclinat...
The objective measures were not significantly different between groups despite a younger tendency in group A (graduate year -2.4 years, 95% confidence interval -5.3 to 0.5, P = .081). The mean perceiv...
A novel online interactive neurosurgical simulator was developed, and satisfactory validity was shown. Audiovisual capture successfully transmitted the tactile information....
Blindness due to rod-cone dystrophies is a significant comorbidity and cause of reduced quality of life worldwide. Optogenetics uses adeno-associated viral (AAV) vectors to bypass lost photoreceptors ...
The environmentally sound invention (ESI) is a "bridge" between environmental sound technologies (ESTs) and green productions. This study investigates the COVID-19 pandemic's impact on ESI efficiency ...
The ESI efficiency is measured using the Slack-Based Measure (SBM) method in the first stage. By excluding the environmental effect of the pandemic on each province using the stochastic frontier analy...
The results show that the pandemic can be a "crisis" in the short term, but an "opportunity" in the long term. First, the SBM efficiency results in the first stage show a decrease in the number of the...
Based on these results, this study discussed the theoretical and political implications. This paper enriches the knowledge of ESTs research and development by proposing a three-stage approach with mul...
We present a database that classifies all patent applications filed at either the United States Patent and Trademark Office (USPTO) or the European Patent Office (EPO) as being either product patents,...