Titre : Virus Pichinde

Virus Pichinde : Questions médicales fréquentes

Termes MeSH sélectionnés :

Deep Learning
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Virus Pichinde : Questions médicales les plus fréquentes", "headline": "Virus Pichinde : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Virus Pichinde : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-06-25", "dateModified": "2025-03-22", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Virus Pichinde" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Arénavirus du Nouveau Monde", "url": "https://questionsmedicales.fr/mesh/D006477", "about": { "@type": "MedicalCondition", "name": "Arénavirus du Nouveau Monde", "code": { "@type": "MedicalCode", "code": "D006477", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "B04.820.480.500.070.095" } } }, "about": { "@type": "MedicalCondition", "name": "Virus Pichinde", "alternateName": "Pichinde virus", "code": { "@type": "MedicalCode", "code": "D018052", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Hinh Ly", "url": "https://questionsmedicales.fr/author/Hinh%20Ly", "affiliation": { "@type": "Organization", "name": "Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA." } }, { "@type": "Person", "name": "Yuying Liang", "url": "https://questionsmedicales.fr/author/Yuying%20Liang", "affiliation": { "@type": "Organization", "name": "Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA." } }, { "@type": "Person", "name": "Qinfeng Huang", "url": "https://questionsmedicales.fr/author/Qinfeng%20Huang", "affiliation": { "@type": "Organization", "name": "Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA." } }, { "@type": "Person", "name": "Morgan Brisse", "url": "https://questionsmedicales.fr/author/Morgan%20Brisse", "affiliation": { "@type": "Organization", "name": "Biochemistry, Molecular Biology and Biophysics Graduate Program, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States." } }, { "@type": "Person", "name": "Da Di", "url": "https://questionsmedicales.fr/author/Da%20Di", "affiliation": { "@type": "Organization", "name": "Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, MN, United States." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Use of machine learning and deep learning to predict particulate", "datePublished": "2023-09-15", "url": "https://questionsmedicales.fr/article/37716314", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.jenvrad.2023.107294" } }, { "@type": "ScholarlyArticle", "name": "A deep learning model for anti-inflammatory peptides identification based on deep variational autoencoder and contrastive learning.", "datePublished": "2024-08-08", "url": "https://questionsmedicales.fr/article/39117712", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41598-024-69419-y" } }, { "@type": "ScholarlyArticle", "name": "Deep Learning Subtraction Angiography: Improved Generalizability with Transfer Learning.", "datePublished": "2022-12-16", "url": "https://questionsmedicales.fr/article/36529442", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.jvir.2022.12.008" } }, { "@type": "ScholarlyArticle", "name": "A Machine Learning and Deep Learning Approach for Recognizing Handwritten Digits.", "datePublished": "2022-07-15", "url": "https://questionsmedicales.fr/article/35875749", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1155/2022/9869948" } }, { "@type": "ScholarlyArticle", "name": "Editorial of Special Issue \"Deep Learning and Machine Learning in Bioinformatics\".", "datePublished": "2022-06-14", "url": "https://questionsmedicales.fr/article/35743052", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.3390/ijms23126610" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Virus", "item": "https://questionsmedicales.fr/mesh/D014780" }, { "@type": "ListItem", "position": 3, "name": "Virus à ARN", "item": "https://questionsmedicales.fr/mesh/D012328" }, { "@type": "ListItem", "position": 4, "name": "Virus à ARN de polarité négative", "item": "https://questionsmedicales.fr/mesh/D000086103" }, { "@type": "ListItem", "position": 5, "name": "Arenaviridae", "item": "https://questionsmedicales.fr/mesh/D001116" }, { "@type": "ListItem", "position": 6, "name": "Arenavirus", "item": "https://questionsmedicales.fr/mesh/D018050" }, { "@type": "ListItem", "position": 7, "name": "Arénavirus du Nouveau Monde", "item": "https://questionsmedicales.fr/mesh/D006477" }, { "@type": "ListItem", "position": 8, "name": "Virus Pichinde", "item": "https://questionsmedicales.fr/mesh/D018052" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Virus Pichinde - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Virus Pichinde", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-09", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Général", "headline": "Général sur Virus Pichinde", "description": "Erreur lors de la génération.", "url": "https://questionsmedicales.fr/mesh/D018052?mesh_terms=Deep+Learning&page=2#section-général" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Erreur lors de la génération.", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Veuillez réessayer ultérieurement." } } ] } ] }

Sources (10000 au total)

Deep Learning Subtraction Angiography: Improved Generalizability with Transfer Learning.

To investigate the utility and generalizability of deep learning subtraction angiography (DLSA) for generating synthetic digital subtraction angiography (DSA) images without misalignment artifacts.... DSA images and native digital angiograms of the cerebral, hepatic, and splenic vasculature, both with and without motion artifacts, were retrospectively collected. Images were divided into a motion-fr... Compared with the traditional DSA method, the proposed approach was found to generate synthetic DSA images with significantly fewer background artifacts (a mean rating of 1.9 [95% CI, 1.1-2.6] vs 3.5 ... DLSA successfully generates synthetic angiograms without misalignment artifacts, is improved through transfer learning, and generalizes reliably to novel vasculature that was not included in the train...

Nailfold capillaroscopy and deep learning in diabetes.

To determine whether nailfold capillary images, acquired using video capillaroscopy, can provide diagnostic information about diabetes and its complications.... Nailfold video capillaroscopy was performed in 120 adult patients with and without type 1 or type 2 diabetes, and with and without cardiovascular disease. Nailfold images were analyzed using convoluti... A total of 5236 nailfold images were acquired from 120 participants (mean 44 images per participant) and were all available for analysis. Models were able to accurately identify the presence of diabet... This proof-of-concept study demonstrates the potential of machine learning for identifying people with microvascular capillary changes from diabetes based on nailfold images, and for possibly identify...