Titre : Chimiokine CCL2

Chimiokine CCL2 : Questions médicales fréquentes

Termes MeSH sélectionnés :

Electronic Data Processing
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Chimiokine CCL2 : Questions médicales les plus fréquentes", "headline": "Chimiokine CCL2 : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Chimiokine CCL2 : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-05-26", "dateModified": "2025-02-20", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Chimiokine CCL2" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Protéines chimioattractives monocytaires", "url": "https://questionsmedicales.fr/mesh/D018945", "about": { "@type": "MedicalCondition", "name": "Protéines chimioattractives monocytaires", "code": { "@type": "MedicalCode", "code": "D018945", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D23.529.374.200.110.990" } } }, "about": { "@type": "MedicalCondition", "name": "Chimiokine CCL2", "alternateName": "Chemokine CCL2", "code": { "@type": "MedicalCode", "code": "D018932", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Nidhi Joshi", "url": "https://questionsmedicales.fr/author/Nidhi%20Joshi", "affiliation": { "@type": "Organization", "name": "Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India." } }, { "@type": "Person", "name": "Krishna Mohan Poluri", "url": "https://questionsmedicales.fr/author/Krishna%20Mohan%20Poluri", "affiliation": { "@type": "Organization", "name": "Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India. Electronic address: krishfbt@iitr.ac.in." } }, { "@type": "Person", "name": "Nupur Nagar", "url": "https://questionsmedicales.fr/author/Nupur%20Nagar", "affiliation": { "@type": "Organization", "name": "Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India." } }, { "@type": "Person", "name": "Élora Midavaine", "url": "https://questionsmedicales.fr/author/%C3%89lora%20Midavaine", "affiliation": { "@type": "Organization", "name": "Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada. elora.midavaine@usherbrooke.ca." } }, { "@type": "Person", "name": "Philippe Sarret", "url": "https://questionsmedicales.fr/author/Philippe%20Sarret", "affiliation": { "@type": "Organization", "name": "Department of Pharmacology and Physiology, Faculty of Medicine and Health Sciences, Institut de pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, QC, Canada." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Using Natural Language Processing and Machine Learning to Identify Opioids in Electronic Health Record Data.", "datePublished": "2023-06-20", "url": "https://questionsmedicales.fr/article/37361429", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.2147/JPR.S389160" } }, { "@type": "ScholarlyArticle", "name": "Using natural language processing to identify opioid use disorder in electronic health record data.", "datePublished": "2022-12-10", "url": "https://questionsmedicales.fr/article/36521420", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.ijmedinf.2022.104963" } }, { "@type": "ScholarlyArticle", "name": "Prediction of intra-abdominal injury using natural language processing of electronic medical record data.", "datePublished": "2024-07-06", "url": "https://questionsmedicales.fr/article/38972771", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.surg.2024.05.042" } }, { "@type": "ScholarlyArticle", "name": "Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing.", "datePublished": "2023-09-02", "url": "https://questionsmedicales.fr/article/37658963", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1186/s40708-023-00203-w" } }, { "@type": "ScholarlyArticle", "name": "Advanced processing of differential phase contrast data: Distinction between different causes of electron phase shifts.", "datePublished": "2023-05-12", "url": "https://questionsmedicales.fr/article/37209502", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.ultramic.2023.113752" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Facteurs biologiques", "item": "https://questionsmedicales.fr/mesh/D001685" }, { "@type": "ListItem", "position": 3, "name": "Protéines et peptides de signalisation intercellulaire", "item": "https://questionsmedicales.fr/mesh/D036341" }, { "@type": "ListItem", "position": 4, "name": "Cytokines", "item": "https://questionsmedicales.fr/mesh/D016207" }, { "@type": "ListItem", "position": 5, "name": "Chimiokines", "item": "https://questionsmedicales.fr/mesh/D018925" }, { "@type": "ListItem", "position": 6, "name": "Chimiokines CC", "item": "https://questionsmedicales.fr/mesh/D019742" }, { "@type": "ListItem", "position": 7, "name": "Protéines chimioattractives monocytaires", "item": "https://questionsmedicales.fr/mesh/D018945" }, { "@type": "ListItem", "position": 8, "name": "Chimiokine CCL2", "item": "https://questionsmedicales.fr/mesh/D018932" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Chimiokine CCL2 - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Chimiokine CCL2", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-16", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Chimiokine CCL2", "description": "Comment mesurer les niveaux de CCL2 ?\nQuels tests sont utilisés pour évaluer l'inflammation ?\nCCL2 est-il un biomarqueur de maladies ?\nComment CCL2 est-il lié à la maladie cardiovasculaire ?\nPeut-on détecter CCL2 dans le liquide céphalorachidien ?", "url": "https://questionsmedicales.fr/mesh/D018932?mesh_terms=Electronic+Data+Processing&page=2#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Chimiokine CCL2", "description": "Quels symptômes sont associés à des niveaux élevés de CCL2 ?\nCCL2 est-il lié à des symptômes neurologiques ?\nComment CCL2 affecte-t-il le système immunitaire ?\nDes niveaux de CCL2 peuvent-ils causer de la douleur ?\nCCL2 est-il impliqué dans des maladies respiratoires ?", "url": "https://questionsmedicales.fr/mesh/D018932?mesh_terms=Electronic+Data+Processing&page=2#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Chimiokine CCL2", "description": "Comment réduire les niveaux de CCL2 ?\nLe stress influence-t-il CCL2 ?\nY a-t-il des aliments qui réduisent CCL2 ?\nL'exercice physique affecte-t-il CCL2 ?\nLa qualité du sommeil influence-t-elle CCL2 ?", "url": "https://questionsmedicales.fr/mesh/D018932?mesh_terms=Electronic+Data+Processing&page=2#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Chimiokine CCL2", "description": "Quels traitements ciblent CCL2 ?\nCCL2 peut-il être une cible pour des thérapies anticancéreuses ?\nComment les anti-inflammatoires affectent-ils CCL2 ?\nY a-t-il des traitements naturels pour CCL2 ?\nLes corticostéroïdes influencent-ils CCL2 ?", "url": "https://questionsmedicales.fr/mesh/D018932?mesh_terms=Electronic+Data+Processing&page=2#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Chimiokine CCL2", "description": "Quelles complications sont liées à CCL2 ?\nCCL2 est-il impliqué dans des maladies neurodégénératives ?\nComment CCL2 affecte-t-il le diabète ?\nY a-t-il des risques d'infection liés à CCL2 ?\nCCL2 est-il lié à des troubles auto-immuns ?", "url": "https://questionsmedicales.fr/mesh/D018932?mesh_terms=Electronic+Data+Processing&page=2#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Chimiokine CCL2", "description": "Quels facteurs augmentent CCL2 ?\nL'âge influence-t-il les niveaux de CCL2 ?\nLes infections chroniques affectent-elles CCL2 ?\nLe régime alimentaire influence-t-il CCL2 ?\nLe manque d'exercice est-il un facteur de risque pour CCL2 ?", "url": "https://questionsmedicales.fr/mesh/D018932?mesh_terms=Electronic+Data+Processing&page=2#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment mesurer les niveaux de CCL2 ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Les niveaux de CCL2 peuvent être mesurés par des tests ELISA dans le sérum ou les tissus." } }, { "@type": "Question", "name": "Quels tests sont utilisés pour évaluer l'inflammation ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "Des tests comme la CRP et la mesure de CCL2 aident à évaluer l'inflammation." } }, { "@type": "Question", "name": "CCL2 est-il un biomarqueur de maladies ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Oui, CCL2 est un biomarqueur potentiel pour des maladies inflammatoires et auto-immunes." } }, { "@type": "Question", "name": "Comment CCL2 est-il lié à la maladie cardiovasculaire ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "Des niveaux élevés de CCL2 sont associés à l'inflammation dans les maladies cardiovasculaires." } }, { "@type": "Question", "name": "Peut-on détecter CCL2 dans le liquide céphalorachidien ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Oui, CCL2 peut être détecté dans le liquide céphalorachidien, indiquant une inflammation neurologique." } }, { "@type": "Question", "name": "Quels symptômes sont associés à des niveaux élevés de CCL2 ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Des niveaux élevés de CCL2 peuvent entraîner des symptômes d'inflammation comme douleur et fatigue." } }, { "@type": "Question", "name": "CCL2 est-il lié à des symptômes neurologiques ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Oui, CCL2 est impliqué dans des symptômes neurologiques dans des maladies comme la sclérose en plaques." } }, { "@type": "Question", "name": "Comment CCL2 affecte-t-il le système immunitaire ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "CCL2 attire les monocytes et les lymphocytes, influençant la réponse immunitaire." } }, { "@type": "Question", "name": "Des niveaux de CCL2 peuvent-ils causer de la douleur ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Oui, CCL2 peut contribuer à la douleur en favorisant l'inflammation dans les tissus." } }, { "@type": "Question", "name": "CCL2 est-il impliqué dans des maladies respiratoires ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Oui, CCL2 est associé à des maladies respiratoires comme l'asthme et la BPCO." } }, { "@type": "Question", "name": "Comment réduire les niveaux de CCL2 ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Adopter un mode de vie sain, avec une alimentation équilibrée et de l'exercice, peut aider." } }, { "@type": "Question", "name": "Le stress influence-t-il CCL2 ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le stress chronique peut augmenter les niveaux de CCL2 et l'inflammation." } }, { "@type": "Question", "name": "Y a-t-il des aliments qui réduisent CCL2 ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "Des aliments riches en antioxydants, comme les baies, peuvent aider à réduire CCL2." } }, { "@type": "Question", "name": "L'exercice physique affecte-t-il CCL2 ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "Oui, l'exercice régulier peut diminuer les niveaux de CCL2 et améliorer la santé globale." } }, { "@type": "Question", "name": "La qualité du sommeil influence-t-elle CCL2 ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Un sommeil de qualité peut réduire l'inflammation et les niveaux de CCL2 dans le corps." } }, { "@type": "Question", "name": "Quels traitements ciblent CCL2 ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Des inhibiteurs de CCL2 sont en développement pour traiter des maladies inflammatoires." } }, { "@type": "Question", "name": "CCL2 peut-il être une cible pour des thérapies anticancéreuses ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Oui, cibler CCL2 pourrait aider à réduire l'infiltration tumorale et l'inflammation." } }, { "@type": "Question", "name": "Comment les anti-inflammatoires affectent-ils CCL2 ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "Les anti-inflammatoires peuvent réduire les niveaux de CCL2 et atténuer l'inflammation." } }, { "@type": "Question", "name": "Y a-t-il des traitements naturels pour CCL2 ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "Certaines plantes médicinales peuvent moduler les niveaux de CCL2, mais des études sont nécessaires." } }, { "@type": "Question", "name": "Les corticostéroïdes influencent-ils CCL2 ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les corticostéroïdes peuvent réduire l'expression de CCL2 dans les tissus inflammés." } }, { "@type": "Question", "name": "Quelles complications sont liées à CCL2 ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "Des niveaux élevés de CCL2 peuvent entraîner des complications dans les maladies cardiovasculaires." } }, { "@type": "Question", "name": "CCL2 est-il impliqué dans des maladies neurodégénératives ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "Oui, CCL2 est associé à des complications dans des maladies comme Alzheimer et Parkinson." } }, { "@type": "Question", "name": "Comment CCL2 affecte-t-il le diabète ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "CCL2 peut contribuer à l'inflammation et aux complications associées au diabète." } }, { "@type": "Question", "name": "Y a-t-il des risques d'infection liés à CCL2 ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Des niveaux élevés de CCL2 peuvent augmenter le risque d'infections en favorisant l'inflammation." } }, { "@type": "Question", "name": "CCL2 est-il lié à des troubles auto-immuns ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "Oui, CCL2 est impliqué dans des complications de troubles auto-immuns comme la polyarthrite." } }, { "@type": "Question", "name": "Quels facteurs augmentent CCL2 ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "Le tabagisme, l'obésité et le stress sont des facteurs de risque augmentant CCL2." } }, { "@type": "Question", "name": "L'âge influence-t-il les niveaux de CCL2 ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les niveaux de CCL2 tendent à augmenter avec l'âge, contribuant à l'inflammation." } }, { "@type": "Question", "name": "Les infections chroniques affectent-elles CCL2 ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les infections chroniques peuvent augmenter les niveaux de CCL2 dans le corps." } }, { "@type": "Question", "name": "Le régime alimentaire influence-t-il CCL2 ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Un régime riche en graisses saturées peut augmenter les niveaux de CCL2 et l'inflammation." } }, { "@type": "Question", "name": "Le manque d'exercice est-il un facteur de risque pour CCL2 ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le manque d'exercice peut contribuer à des niveaux élevés de CCL2 et à l'inflammation." } } ] } ] }

Sources (10000 au total)

Using Natural Language Processing and Machine Learning to Identify Opioids in Electronic Health Record Data.

This study evaluates the utility of machine learning (ML) and natural language processing (NLP) in the processing and initial analysis of data within the electronic health record (EHR). We present and... A total of 4216 distinct medication entries were obtained from the EHR and were initially labeled by human reviewers as opioid or non-opioid medications. An approach incorporating bag-of-words NLP and... A total of 3991 medication strings were classified as non-opioid medications (94.7%), and 225 were classified as opioid medications by the human reviewers (5.3%). The algorithm achieved a 99.6% accura... The automated approach achieved excellent performance in classifying opioids or non-opioids, even with a practical number of human reviewed training examples. This will allow a significant reduction i...

Using natural language processing to identify opioid use disorder in electronic health record data.

As opioid prescriptions have risen, there has also been an increase in opioid use disorder (OUD) and its adverse outcomes. Accurate and complete epidemiologic surveillance of OUD, to inform prevention... Data were drawn from EHR records for hospital and emergency department patient visits to a large regional academic medical center from 2017 to 2019. International Classification of Disease, 10th Editi... While there was substantial overlap in the identified records (n = 1,381 [59.2 %]), overall n = 2,332 unique visits were identified. Of the total unique visits, 430 (18.4 %) were identified only by IC... NLP-based algorithms can automate data extraction and identify evidence of opioid use disorder from unstructured electronic healthcare records. The most complete ascertainment of OUD in EHR was combin...

Prediction of intra-abdominal injury using natural language processing of electronic medical record data.

This study aimed to use natural language processing to predict the presence of intra-abdominal injury using unstructured data from electronic medical records.... This was a random-sample retrospective observational cohort study leveraging unstructured data from injured patients taken to one of 9 acute care hospitals in an integrated health system between 2015 ... A random sample of 7,000 patient encounters of 177,127 was annotated. Only 2,951 had sufficient information to determine whether an intra-abdominal injury was present. Among those, 84 (2.9%) had an in... Natural language processing could be a screening decision support tool, which, if paired with human clinical assessment, can maximize precision of intra-abdominal injury identification....

Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing.

Abstracting cerebrovascular disease (CeVD) from inpatient electronic medical records (EMRs) through natural language processing (NLP) is pivotal for automated disease surveillance and improving patien... CeVD status was confirmed through a chart review on randomly selected hospitalized patients who were 18 years or older and discharged from 3 hospitals in Calgary, Alberta, Canada, between January 1 an... Of the study sample (n = 3036), the prevalence of CeVD was 11.8% (n = 360); the median patient age was 63; and females accounted for 50.3% (n = 1528) based on chart data. Among 49 extracted clinical d... The NLP algorithm developed in this study performed better than the ICD code algorithm in detecting CeVD. The NLP models could result in an automated EMR tool for identifying CeVD cases and be applied...

Assessing longitudinal housing status using Electronic Health Record data: a comparison of natural language processing, structured data, and patient-reported history.

Measuring long-term housing outcomes is important for evaluating the impacts of services for individuals with homeless experience. However, assessing long-term housing status using traditional methods... We compared VA EHR indicators of housing instability, including information extracted from clinical notes using natural language processing (NLP), with patient-reported housing outcomes in a cohort of... NLP achieved higher sensitivity and specificity than standard diagnosis codes for detecting episodes of unstable housing. Other structured data elements in the VA EHR showed promising performance, par... Evaluation efforts and research studies assessing longitudinal housing outcomes should incorporate multiple data sources of documentation to achieve optimal performance....

Retrospective study of propionic acidemia using natural language processing in Mayo Clinic electronic health record data.

Propionic acidemia (PA) is a rare autosomal recessive organic acidemia that classically presents within the first days of life with a metabolic crisis or via newborn screening and is confirmed with la... To retrospectively describe the natural history of patients with PA in a clinical setting from a real-world database using both structured and unstructured electronic health record (EHR) data using no... This retrospective study used EHR data to identify patients with PA seen at the Mayo Clinic. Unstructured clinical text (medical notes, pathology reports) were analyzed using augmented curation natura... In total, 13 patients with PA were identified, with visits occurring from 1998 to 2022. Age at diagnosis ranged from birth to 3 years; age at initial evaluation at the Mayo Clinic ranged from 3 days t... This study highlights the range and frequency of clinical outcomes experienced by patients with PA and demonstrates the clinical burden of MDEs....

Evaluation of electronic screening in the preoperative process.

Rising patient numbers, with increasing complexity, challenge the sustainability of the current preoperative process. We evaluated whether an electronic screening application can distinguish patients ... Prospective cohort study.... Preoperative clinic of a tertiary academic hospital.... 1395 adult patients scheduled for surgery or procedural sedation.... We assessed a novel electronic preoperative screening application which consists of a questionnaire with a maximum of 185 questions regarding the patient's medical history and current state of health.... The recommendation of the electronic screening system was compared with the regular preoperative assessment using measures of diagnostic accuracy and agreement. Secondary outcomes included ASA-PS clas... Sensitivity to detect patients who needed additional consultation was 97.5% (95%CI 91.2-99.7) and the negative likelihood ratio was 0.08 (95%CI 0.02-0.32). 407 (29.2%) patients were approved for surge... Electronic screening can reliably identify patients who can have their first contact with an anesthesiologist on the day of surgery, potentially allowing a major proportion of patients to safely bypas...