Titre : Inhibiteur tissulaire de métalloprotéinase-2

Inhibiteur tissulaire de métalloprotéinase-2 : Questions médicales fréquentes

Termes MeSH sélectionnés :

Deep Learning
{ "@context": "https://schema.org", "@graph": [ { "@type": "MedicalWebPage", "name": "Inhibiteur tissulaire de métalloprotéinase-2 : Questions médicales les plus fréquentes", "headline": "Inhibiteur tissulaire de métalloprotéinase-2 : Comprendre les symptômes, diagnostics et traitements", "description": "Guide complet et accessible sur les Inhibiteur tissulaire de métalloprotéinase-2 : explications, diagnostics, traitements et prévention. Information médicale validée destinée aux patients.", "datePublished": "2024-02-03", "dateModified": "2025-04-28", "inLanguage": "fr", "medicalAudience": [ { "@type": "MedicalAudience", "name": "Grand public", "audienceType": "Patient", "healthCondition": { "@type": "MedicalCondition", "name": "Inhibiteur tissulaire de métalloprotéinase-2" }, "suggestedMinAge": 18, "suggestedGender": "unisex" }, { "@type": "MedicalAudience", "name": "Médecins", "audienceType": "Physician", "geographicArea": { "@type": "AdministrativeArea", "name": "France" } }, { "@type": "MedicalAudience", "name": "Chercheurs", "audienceType": "Researcher", "geographicArea": { "@type": "AdministrativeArea", "name": "International" } } ], "reviewedBy": { "@type": "Person", "name": "Dr Olivier Menir", "jobTitle": "Expert en Médecine", "description": "Expert en Médecine, Optimisation des Parcours de Soins et Révision Médicale", "url": "/static/pages/docteur-olivier-menir.html", "alumniOf": { "@type": "EducationalOrganization", "name": "Université Paris Descartes" } }, "isPartOf": { "@type": "MedicalWebPage", "name": "Inhibiteur tissulaire des métalloprotéinases", "url": "https://questionsmedicales.fr/mesh/D019714", "about": { "@type": "MedicalCondition", "name": "Inhibiteur tissulaire des métalloprotéinases", "code": { "@type": "MedicalCode", "code": "D019714", "codingSystem": "MeSH" }, "identifier": { "@type": "PropertyValue", "propertyID": "MeSH Tree", "value": "D12.776.815.875" } } }, "about": { "@type": "MedicalCondition", "name": "Inhibiteur tissulaire de métalloprotéinase-2", "alternateName": "Tissue Inhibitor of Metalloproteinase-2", "code": { "@type": "MedicalCode", "code": "D019716", "codingSystem": "MeSH" } }, "author": [ { "@type": "Person", "name": "Anna Pryczynicz", "url": "https://questionsmedicales.fr/author/Anna%20Pryczynicz", "affiliation": { "@type": "Organization", "name": "Department of Pathomorphology, Medical University of Bialystok, Bialystok, Poland." } }, { "@type": "Person", "name": "Dianchen Wang", "url": "https://questionsmedicales.fr/author/Dianchen%20Wang", "affiliation": { "@type": "Organization", "name": "Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China. wdc8681949@163.com." } }, { "@type": "Person", "name": "Yake Chen", "url": "https://questionsmedicales.fr/author/Yake%20Chen", "affiliation": { "@type": "Organization", "name": "Department of Hernia and Abdominal Wall Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Road, Zhengzhou, 450052, Henan, China." } }, { "@type": "Person", "name": "Maryam Raeeszadeh-Sarmazdeh", "url": "https://questionsmedicales.fr/author/Maryam%20Raeeszadeh-Sarmazdeh", "affiliation": { "@type": "Organization", "name": "Chemical and Materials Engineering, University of Nevada, Reno, NV 89557, USA. Electronic address: maryamr@unr.edu." } }, { "@type": "Person", "name": "William G Stetler-Stevenson", "url": "https://questionsmedicales.fr/author/William%20G%20Stetler-Stevenson", "affiliation": { "@type": "Organization", "name": "Extracellular Matrix Pathology Section, Laboratory of Pathology, National Cancer Institute, National Institute of Health, Bethesda, MD, United States." } } ], "citation": [ { "@type": "ScholarlyArticle", "name": "Diabetes detection from non-diabetic retinopathy fundus images using deep learning methodology.", "datePublished": "2024-08-22", "url": "https://questionsmedicales.fr/article/39258195", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.heliyon.2024.e36592" } }, { "@type": "ScholarlyArticle", "name": "Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.", "datePublished": "2024-08-19", "url": "https://questionsmedicales.fr/article/39158783", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1007/s10877-024-01206-6" } }, { "@type": "ScholarlyArticle", "name": "Exogenous variable driven deep learning models for improved price forecasting of TOP crops in India.", "datePublished": "2024-07-26", "url": "https://questionsmedicales.fr/article/39060335", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41598-024-68040-3" } }, { "@type": "ScholarlyArticle", "name": "Enabling high throughput deep reinforcement learning with first principles to investigate catalytic reaction mechanisms.", "datePublished": "2024-07-25", "url": "https://questionsmedicales.fr/article/39060277", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1038/s41467-024-50531-6" } }, { "@type": "ScholarlyArticle", "name": "Noninvasive and fast method of calculation for instantaneous wave-free ratio based on haemodynamics and deep learning.", "datePublished": "2024-07-23", "url": "https://questionsmedicales.fr/article/39067137", "identifier": { "@type": "PropertyValue", "propertyID": "DOI", "value": "10.1016/j.cmpb.2024.108355" } } ], "breadcrumb": { "@type": "BreadcrumbList", "itemListElement": [ { "@type": "ListItem", "position": 1, "name": "questionsmedicales.fr", "item": "https://questionsmedicales.fr" }, { "@type": "ListItem", "position": 2, "name": "Acides aminés, peptides et protéines", "item": "https://questionsmedicales.fr/mesh/D000602" }, { "@type": "ListItem", "position": 3, "name": "Protéines", "item": "https://questionsmedicales.fr/mesh/D011506" }, { "@type": "ListItem", "position": 4, "name": "Protéines sécrétoires inhibitrices de protéinases", "item": "https://questionsmedicales.fr/mesh/D053491" }, { "@type": "ListItem", "position": 5, "name": "Inhibiteur tissulaire des métalloprotéinases", "item": "https://questionsmedicales.fr/mesh/D019714" }, { "@type": "ListItem", "position": 6, "name": "Inhibiteur tissulaire de métalloprotéinase-2", "item": "https://questionsmedicales.fr/mesh/D019716" } ] } }, { "@type": "MedicalWebPage", "name": "Article complet : Inhibiteur tissulaire de métalloprotéinase-2 - Questions et réponses", "headline": "Questions et réponses médicales fréquentes sur Inhibiteur tissulaire de métalloprotéinase-2", "description": "Une compilation de questions et réponses structurées, validées par des experts médicaux.", "datePublished": "2025-05-13", "inLanguage": "fr", "hasPart": [ { "@type": "MedicalWebPage", "name": "Diagnostic", "headline": "Diagnostic sur Inhibiteur tissulaire de métalloprotéinase-2", "description": "Comment diagnostiquer une anomalie de TIMP-2 ?\nQuels examens sont utilisés pour évaluer TIMP-2 ?\nY a-t-il des biomarqueurs associés à TIMP-2 ?\nQuel rôle joue TIMP-2 dans le diagnostic du cancer ?\nPeut-on mesurer TIMP-2 dans les tissus ?", "url": "https://questionsmedicales.fr/mesh/D019716?mesh_terms=Deep+Learning&page=1000#section-diagnostic" }, { "@type": "MedicalWebPage", "name": "Symptômes", "headline": "Symptômes sur Inhibiteur tissulaire de métalloprotéinase-2", "description": "Quels symptômes sont liés à une dysrégulation de TIMP-2 ?\nTIMP-2 est-il associé à des douleurs ?\nY a-t-il des symptômes cutanés liés à TIMP-2 ?\nComment TIMP-2 affecte-t-il la cicatrisation ?\nTIMP-2 influence-t-il les symptômes respiratoires ?", "url": "https://questionsmedicales.fr/mesh/D019716?mesh_terms=Deep+Learning&page=1000#section-symptômes" }, { "@type": "MedicalWebPage", "name": "Prévention", "headline": "Prévention sur Inhibiteur tissulaire de métalloprotéinase-2", "description": "Comment prévenir les déséquilibres de TIMP-2 ?\nY a-t-il des exercices recommandés pour TIMP-2 ?\nLes habitudes alimentaires influencent-elles TIMP-2 ?\nFaut-il éviter certains aliments pour TIMP-2 ?\nLa gestion du stress aide-t-elle TIMP-2 ?", "url": "https://questionsmedicales.fr/mesh/D019716?mesh_terms=Deep+Learning&page=1000#section-prévention" }, { "@type": "MedicalWebPage", "name": "Traitements", "headline": "Traitements sur Inhibiteur tissulaire de métalloprotéinase-2", "description": "Quels traitements ciblent TIMP-2 ?\nPeut-on utiliser des médicaments anti-inflammatoires avec TIMP-2 ?\nY a-t-il des traitements naturels pour TIMP-2 ?\nComment la physiothérapie aide-t-elle avec TIMP-2 ?\nLes traitements ciblant TIMP-2 sont-ils en recherche ?", "url": "https://questionsmedicales.fr/mesh/D019716?mesh_terms=Deep+Learning&page=1000#section-traitements" }, { "@type": "MedicalWebPage", "name": "Complications", "headline": "Complications sur Inhibiteur tissulaire de métalloprotéinase-2", "description": "Quelles complications peuvent survenir avec TIMP-2 ?\nTIMP-2 est-il lié à des maladies chroniques ?\nComment TIMP-2 affecte-t-il la santé cardiovasculaire ?\nY a-t-il des risques de cancer liés à TIMP-2 ?\nTIMP-2 peut-il entraîner des complications respiratoires ?", "url": "https://questionsmedicales.fr/mesh/D019716?mesh_terms=Deep+Learning&page=1000#section-complications" }, { "@type": "MedicalWebPage", "name": "Facteurs de risque", "headline": "Facteurs de risque sur Inhibiteur tissulaire de métalloprotéinase-2", "description": "Quels facteurs augmentent le risque de déséquilibre de TIMP-2 ?\nLe stress est-il un facteur de risque pour TIMP-2 ?\nY a-t-il des prédispositions génétiques pour TIMP-2 ?\nL'alimentation influence-t-elle le risque de TIMP-2 ?\nLes infections peuvent-elles affecter TIMP-2 ?", "url": "https://questionsmedicales.fr/mesh/D019716?mesh_terms=Deep+Learning&page=1000#section-facteurs de risque" } ] }, { "@type": "FAQPage", "mainEntity": [ { "@type": "Question", "name": "Comment diagnostiquer une anomalie de TIMP-2 ?", "position": 1, "acceptedAnswer": { "@type": "Answer", "text": "Des tests sanguins mesurant les niveaux de TIMP-2 peuvent être effectués." } }, { "@type": "Question", "name": "Quels examens sont utilisés pour évaluer TIMP-2 ?", "position": 2, "acceptedAnswer": { "@type": "Answer", "text": "L'électrophorèse des protéines et les dosages immunologiques sont courants." } }, { "@type": "Question", "name": "Y a-t-il des biomarqueurs associés à TIMP-2 ?", "position": 3, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des biomarqueurs comme MMPs peuvent être évalués en parallèle." } }, { "@type": "Question", "name": "Quel rôle joue TIMP-2 dans le diagnostic du cancer ?", "position": 4, "acceptedAnswer": { "@type": "Answer", "text": "TIMP-2 peut être un indicateur de la progression tumorale dans certains cancers." } }, { "@type": "Question", "name": "Peut-on mesurer TIMP-2 dans les tissus ?", "position": 5, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des biopsies peuvent être analysées pour évaluer TIMP-2 localement." } }, { "@type": "Question", "name": "Quels symptômes sont liés à une dysrégulation de TIMP-2 ?", "position": 6, "acceptedAnswer": { "@type": "Answer", "text": "Une inflammation et des troubles de la cicatrisation peuvent survenir." } }, { "@type": "Question", "name": "TIMP-2 est-il associé à des douleurs ?", "position": 7, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des douleurs peuvent être ressenties en raison de l'inflammation tissulaire." } }, { "@type": "Question", "name": "Y a-t-il des symptômes cutanés liés à TIMP-2 ?", "position": 8, "acceptedAnswer": { "@type": "Answer", "text": "Des lésions cutanées peuvent apparaître en cas de déséquilibre de TIMP-2." } }, { "@type": "Question", "name": "Comment TIMP-2 affecte-t-il la cicatrisation ?", "position": 9, "acceptedAnswer": { "@type": "Answer", "text": "Une surproduction de TIMP-2 peut retarder la cicatrisation des plaies." } }, { "@type": "Question", "name": "TIMP-2 influence-t-il les symptômes respiratoires ?", "position": 10, "acceptedAnswer": { "@type": "Answer", "text": "Oui, une inflammation pulmonaire liée à TIMP-2 peut causer des symptômes respiratoires." } }, { "@type": "Question", "name": "Comment prévenir les déséquilibres de TIMP-2 ?", "position": 11, "acceptedAnswer": { "@type": "Answer", "text": "Un mode de vie sain et une alimentation équilibrée peuvent aider à prévenir." } }, { "@type": "Question", "name": "Y a-t-il des exercices recommandés pour TIMP-2 ?", "position": 12, "acceptedAnswer": { "@type": "Answer", "text": "Des exercices réguliers peuvent améliorer la santé tissulaire et réguler TIMP-2." } }, { "@type": "Question", "name": "Les habitudes alimentaires influencent-elles TIMP-2 ?", "position": 13, "acceptedAnswer": { "@type": "Answer", "text": "Oui, une alimentation riche en antioxydants peut moduler TIMP-2." } }, { "@type": "Question", "name": "Faut-il éviter certains aliments pour TIMP-2 ?", "position": 14, "acceptedAnswer": { "@type": "Answer", "text": "Il est conseillé de limiter les aliments pro-inflammatoires pour TIMP-2." } }, { "@type": "Question", "name": "La gestion du stress aide-t-elle TIMP-2 ?", "position": 15, "acceptedAnswer": { "@type": "Answer", "text": "Oui, la gestion du stress peut réduire l'inflammation et réguler TIMP-2." } }, { "@type": "Question", "name": "Quels traitements ciblent TIMP-2 ?", "position": 16, "acceptedAnswer": { "@type": "Answer", "text": "Des thérapies géniques et des inhibiteurs spécifiques sont en développement." } }, { "@type": "Question", "name": "Peut-on utiliser des médicaments anti-inflammatoires avec TIMP-2 ?", "position": 17, "acceptedAnswer": { "@type": "Answer", "text": "Oui, les anti-inflammatoires peuvent aider à réguler l'expression de TIMP-2." } }, { "@type": "Question", "name": "Y a-t-il des traitements naturels pour TIMP-2 ?", "position": 18, "acceptedAnswer": { "@type": "Answer", "text": "Certaines plantes médicinales peuvent moduler l'activité de TIMP-2." } }, { "@type": "Question", "name": "Comment la physiothérapie aide-t-elle avec TIMP-2 ?", "position": 19, "acceptedAnswer": { "@type": "Answer", "text": "La physiothérapie peut améliorer la fonction tissulaire affectée par TIMP-2." } }, { "@type": "Question", "name": "Les traitements ciblant TIMP-2 sont-ils en recherche ?", "position": 20, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des études cliniques explorent des traitements innovants pour TIMP-2." } }, { "@type": "Question", "name": "Quelles complications peuvent survenir avec TIMP-2 ?", "position": 21, "acceptedAnswer": { "@type": "Answer", "text": "Des complications comme la fibrose tissulaire peuvent se développer." } }, { "@type": "Question", "name": "TIMP-2 est-il lié à des maladies chroniques ?", "position": 22, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des niveaux anormaux de TIMP-2 sont associés à des maladies chroniques." } }, { "@type": "Question", "name": "Comment TIMP-2 affecte-t-il la santé cardiovasculaire ?", "position": 23, "acceptedAnswer": { "@type": "Answer", "text": "Une dysrégulation de TIMP-2 peut contribuer à des maladies cardiovasculaires." } }, { "@type": "Question", "name": "Y a-t-il des risques de cancer liés à TIMP-2 ?", "position": 24, "acceptedAnswer": { "@type": "Answer", "text": "Oui, des niveaux élevés de TIMP-2 peuvent être un facteur de risque pour certains cancers." } }, { "@type": "Question", "name": "TIMP-2 peut-il entraîner des complications respiratoires ?", "position": 25, "acceptedAnswer": { "@type": "Answer", "text": "Oui, une inflammation pulmonaire liée à TIMP-2 peut causer des complications respiratoires." } }, { "@type": "Question", "name": "Quels facteurs augmentent le risque de déséquilibre de TIMP-2 ?", "position": 26, "acceptedAnswer": { "@type": "Answer", "text": "L'âge, le tabagisme et l'obésité sont des facteurs de risque connus." } }, { "@type": "Question", "name": "Le stress est-il un facteur de risque pour TIMP-2 ?", "position": 27, "acceptedAnswer": { "@type": "Answer", "text": "Oui, le stress chronique peut influencer négativement les niveaux de TIMP-2." } }, { "@type": "Question", "name": "Y a-t-il des prédispositions génétiques pour TIMP-2 ?", "position": 28, "acceptedAnswer": { "@type": "Answer", "text": "Certaines variations génétiques peuvent affecter l'expression de TIMP-2." } }, { "@type": "Question", "name": "L'alimentation influence-t-elle le risque de TIMP-2 ?", "position": 29, "acceptedAnswer": { "@type": "Answer", "text": "Oui, une alimentation déséquilibrée peut augmenter le risque de dysrégulation de TIMP-2." } }, { "@type": "Question", "name": "Les infections peuvent-elles affecter TIMP-2 ?", "position": 30, "acceptedAnswer": { "@type": "Answer", "text": "Oui, certaines infections peuvent perturber l'équilibre de TIMP-2 dans l'organisme." } } ] } ] }

Sources (10000 au total)

Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices.

Intraoperative hypotension is associated with adverse outcomes. Predicting and proactively managing hypotension can reduce its incidence. Previously, hypotension prediction algorithms using artificial... An open-source database of non-cardiac surgery patients ( https://vitadb.net/dataset ) was used to develop the deep learning algorithm. The algorithm was validated using external data obtained from a ... Data from 4754 and 421 patients were used for algorithm development and external validation, respectively. The fully connected model of Multi-head Attention architecture and the Globally Attentive Loc... A deep learning model utilizing multi-channel non-invasive monitors could predict intraoperative hypotension with high accuracy. Future prospective studies are needed to determine whether this model c...

Noninvasive and fast method of calculation for instantaneous wave-free ratio based on haemodynamics and deep learning.

Instantaneous wave-free ratio (iFR) is a new invasive indicator of myocardial ischaemia, and its diagnostic performance is as good as the "gold standard" of myocardial ischaemia diagnosis: fractional ... In this study we successfully collected clinical data, such as FFR, in 205 stenotic vessels from 186 patients with coronary heart disease. A neural network model was established to predict coronary ar... The results showed that the mean squared error (MSE) between the pressure drop predicted by the neural network value for the coronary artery stenosis model and the ground truth in the test set was 0.0... The results of this study demonstrate the utility of a simplified single-branch model in an iFR...

Deep learning reconstruction for coronary CT angiography in patients with origin anomaly, stent or bypass graft.

To develop and validate a deep learning (DL)-model for automatic reconstruction for coronary CT angiography (CCTA) in patients with origin anomaly, stent or bypass graft.... In this retrospective study, a DL model for automatic CCTA reconstruction was developed with training and validation sets from 6063 and 1962 patients. The algorithm was evaluated on an independent ext... In the external test set, 812 patients (mean age, 64.0 ± 11.6, 100 with origin anomalies, 152 with stents, 105 with bypass grafts) were evaluated. The successful rates for automatic reconstruction wer... The developed DL model enabled accurate automatic CCTA reconstruction of bypass graft, stent and origin anomaly. It significantly reduced post-processing time and improved clinical workflow....

Semi-supervised Double Deep Learning Temporal Risk Prediction (SeDDLeR) with Electronic Health Records.

Risk prediction plays a crucial role in planning for prevention, monitoring, and treatment. Electronic Health Records (EHRs) offer an expansive repository of temporal medical data encompassing both ri... We develop a Semi-supervised Double Deep Learning Temporal Risk Prediction (SeDDLeR) algorithm based on extensive unlabeled longitudinal Electronic Health Records (EHR) data augmented by a limited set... The SeDDLeR algorithm calculates an individualized risk of developing future clinical events over time using each patient's baseline EHR features via the following steps: (1) construction of an initia... SeDDLeR outperforms benchmark risk prediction methods, including Semi-parametric Transformation Model (STM) and DeepHit, with consistently best accuracy across experiments. SeDDLeR achieved the best C... SeDDLeR can train robust risk prediction models in both real-world EHR and synthetic datasets with minimal requirements of labeling event times. It holds the potential to be incorporated for future cl...